For ΔABC, if m∠A + m∠B = 100 and m∠B + m∠C = 130, then find the measures of all the angles of ΔABC.
amitdubey1999:
ans is A=50 B=50 C=80 DEGREES respectively.
Answers
Answered by
58
.............................................................................................
Sum of angles in a triangle = 180°
.
Given that m∠A + m∠B = 100°
⇒ m∠C = 180 - 100 = 80°
.
Given m∠B + m∠C = 130
⇒ m∠B = 130 - 80 = 50°
.
Given m∠A + m∠B = 100
⇒ m∠A = 100 - 50 = 50°
..............................................................................................
Answer: m∠A = 50° , m∠B = 50° and m∠C = 80°
.............................................................................................
Answered by
0
Hi ,
It is given that ,
In ∆ABC ,
m<A + m<B = 100 ------( 1 )
m<B + m<C = 130° ------( 2 )
We know that ,
m<A + m<B + m<C = 180° ---( 3 )
[ Angle sum property ]
substitute ( 1 ) in equation ( 3 ) , we get
100 + m<C = 180
m<C = 180 - 100 = 80
Substitute m<C = 80° in ( 2 ), we get
m<B = 130 - 80 = 50°
Substitute m<B = 50° in ( 1 ) we get
m<A = 100 - 50 = 50°
Therefore ,
In ∆ABC ,
m<A = m<B = 50° ,
m<C = 80°
I hope this helps you.
: )
It is given that ,
In ∆ABC ,
m<A + m<B = 100 ------( 1 )
m<B + m<C = 130° ------( 2 )
We know that ,
m<A + m<B + m<C = 180° ---( 3 )
[ Angle sum property ]
substitute ( 1 ) in equation ( 3 ) , we get
100 + m<C = 180
m<C = 180 - 100 = 80
Substitute m<C = 80° in ( 2 ), we get
m<B = 130 - 80 = 50°
Substitute m<B = 50° in ( 1 ) we get
m<A = 100 - 50 = 50°
Therefore ,
In ∆ABC ,
m<A = m<B = 50° ,
m<C = 80°
I hope this helps you.
: )
Similar questions