For ΔABC, prove that tan(A+C/2) = cot*b/2
Answers
Answered by
2
(a-b)/(a+b)=(2R sin A - 2R sin B)/(2R sin A + 2R sin B)
=(sin A - sin b) / ( sin A + sin B)
= 2 cos (A+B /2)sin (A - B / 2) / 2sin(A+B /2)cos (A- B / 2)
= cot (A+B / 2)tan(A-B / 2)
=tan (C/2) tan (A - B /2) [A+B+C=pi
(a-b)/(a+b)cot(C/2)=tan(A-B/2)
=(sin A - sin b) / ( sin A + sin B)
= 2 cos (A+B /2)sin (A - B / 2) / 2sin(A+B /2)cos (A- B / 2)
= cot (A+B / 2)tan(A-B / 2)
=tan (C/2) tan (A - B /2) [A+B+C=pi
(a-b)/(a+b)cot(C/2)=tan(A-B/2)
Answered by
1
In ΔABC ,
∠A + ∠B + ∠C = 180° [ Angle sum property ]
⇒ ∠A +∠C = 180° - ∠B
Divide each term with 2 , we get
⇒ ∠A/2 + ∠C/2 = 180°/2 - ∠B/2
⇒ ( ∠A + ∠C )/2 = 90° - ∠B/2
⇒ Tan ( ∠A + ∠C )/2 = Tan ( 90° - ∠B/ 2 )
⇒ Tan ( ∠A + ∠C )/2 = Cot ∠B/2
.....
Similar questions