For all values of x.
f(x) = x - 1
and
g(x) = 2x*squared* + 3
Solve fg(x) = gf(x)
Answers
Answered by
1
Hey There
Here's The Answer
________________________
• Given :
- f(x) = x - 1
- g(x) = 2x² + 3
• To Show : f( g(x) ) = g( f(x) )
• L.H.S.
=> f( g(x) ) = f ( 2x² + 3 )
=> f ( 2x² + 3 ) = 2x² + 3 - 1
=> f ( 2x² + 3 ) = 2x² + 2
• R.H.S.
=> g( f(x) ) = g ( x - 1 )
=> g ( x - 1 ) = 2 ( x - 1 )² + 3
=> g ( x - 1 ) = 2 ( x² + 1² - 2x ) + 3
=> g ( x - 1 ) = 2x² + 2 - 4x + 3
=> g ( x - 1 ) = 2x² + 2 - 4x + 3
=> g ( x - 1 ) = 2x² - 4x + 5
• Hence, L.H.S. ≠ R.H.S.
Hope It Helps.
Similar questions