For all x, x²+2ax +10-3a> 0, then the interval in which a lies is
(A)a <-5
(B)-5 < a < 2
(C)a> 5
(D) 2<a<5
say the correct answer if the answer is correct I'll mark u brainliest
Answers
Answered by
6
For all x, x² +2ax + 10 - 3a > 0, then the interval in which a lies is
(A)a <-5
(B)-5 < a < 2
(C)a> 5
(D) 2<a<5
─━─━─━─━─━─━─━─━─━─━─━─━
For all x, x² +2ax + 10 - 3a > 0
─━─━─━─━─━─━─━─━─━─━─━─━─
The interval in which a lies is
(A)a <-5
(B)-5 < a < 2
(C)a> 5
(D) 2<a<5
─━─━─━─━─━─━─━─━─━─━─━─━─
Let us consider a quadratic polynomial f(x) = ax² +bx + c , then f(x) > 0, is possible only when
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
mathdude500:
Hey Brainly star
Answered by
3
ᴀɴsᴡᴇʀ
∴−5<a<2
Given equation-
sᴛᴇᴘ ʙʏ sᴛᴇᴘ sᴘᴏʟᴜᴛɪᴏɴ
x2+2ax+(10−3a)>0 for all x∈R.
Here, A=1,B=2a,C=(10−3a)
As we know that Ax2+Bx+C>0 for all x∈R if-
A>0 and D<0
A=1>0
Now,
D<0
B2−4AC<0
(2a)2−4(1)(10−3a)<0
4a2−40+12a<0
a2+3a−10=0
(a+5)(a−2)<0
a∈(−5,2)
∴−5<a<2
Similar questions