Math, asked by nakulkumar2010, 3 months ago

For all x, x²+2ax +10-3a> 0, then the interval in which a lies is

(A)a <-5

(B)-5 < a < 2

(C)a> 5

(D) 2<a<5



say the correct answer if the answer is correct I'll mark u brainliest​

Answers

Answered by mathdude500
6

\large\underline\blue{\bold{Given \:  Question :-  }}

For all x, x² +2ax + 10 - 3a > 0, then the interval in which a lies is

(A)a <-5

(B)-5 < a < 2

(C)a> 5

(D) 2<a<5

─━─━─━─━─━─━─━─━─━─━─━─━

\huge \orange{AηsωeR} ✍

\large\underline\blue{\bold{Given :-  }}

For all x, x² +2ax + 10 - 3a > 0

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{To Find :-  }}

The interval in which a lies is

(A)a <-5

(B)-5 < a < 2

(C)a> 5

(D) 2<a<5

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large\underline\purple{\bold{Understanding \: the \: Concept :-  }}

Let us consider a quadratic polynomial f(x) = ax² +bx + c , then f(x) > 0, is possible only when

\sf \:  ⟼(1). \: a &gt; 0

\sf \:  ⟼(2). \:  {b}^{2}  - 4ac &gt; 0

\sf \:  ⟼(3).(x - a)(x - b) &gt; 0\bf\implies \:x &lt; a \: or \: x &gt; b

\sf \:  provided \: that \: a &lt; b

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\bf \:For all x,  \: x² +2ax  + 10 - 3a &gt; 0,

\bf\implies \: {(2a)}^{2}  - 4 \times 1 \times (10 - 3a) &gt; 0

\bf\implies \: {4a}^{2}  - 40 + 12a &gt; 0

\bf\implies \: {4a}^{2}  + 12a - 40 &gt; 0

\bf\implies \: {4a}^{2}  + 20a - 8a - 40 &gt; 0

\bf\implies \: 4a(a + 5) - 8(a + 5) &gt; 0

\bf\implies \:(a + 5)(4a - 8) &gt; 0

\bf\implies \:4(a  +  5)(a - 2) &gt; 0

\bf\implies \:a &lt;  - 5 \: or \: a &gt; 2

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Option (a)  \: is  \: correct}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─


mathdude500: Hey Brainly star
mathdude500: You thanked my answer
mathdude500: It means alot to me
mathdude500: Thank you so much
Answered by pazhaniakshaiadhi
3

ᴀɴsᴡᴇʀ

∴−5<a<2

Given equation-

sᴛᴇᴘ ʙʏ sᴛᴇᴘ sᴘᴏʟᴜᴛɪᴏɴ

x2+2ax+(10−3a)>0 for all x∈R.

Here, A=1,B=2a,C=(10−3a)

As we know that Ax2+Bx+C>0 for all x∈R if-

A>0 and D<0

A=1>0

Now,

D<0

B2−4AC<0

(2a)2−4(1)(10−3a)<0

4a2−40+12a<0

a2+3a−10=0

(a+5)(a−2)<0

a∈(−5,2)

∴−5<a<2

Similar questions