For an A.P. 1/6,1/4,1/3,...... Find t20 & S10
Answers
Answered by
82
Hi ,
1/6 , 1/4 , 1/3 ,... are in A.P
first term = a = a1 = 1/6
common difference ( d ) = a2 - a1
d = 1/4 - 1/6
d = ( 3 - 2 ) / 12
d = 1/2
***********************************
we know that
1 ) n th term in A.P = tn = a + ( n - 1 )d
2 ) sum of n terms = Sn = n/2[ 2a + ( n - 1 )d ]
**********************************
1 ) a = 1/6 , d = 1/2 , n = 20
t20 = a + 19d
= 1/6 + 19 ( 1/2)
= 1/6 + 19/2
= ( 1 + 57 ) / 6
= 58/6
= 29/3
2 ) a = 1/6 , d = 1/2 , n = 10
S10 = ( 10/2 ) [ 2 × 1/6 + 9 × 1/2 ]
= 5 [ 1/3 + 9/2 ]
= ( 5/6 ) ( 2 + 27 )
= ( 5 × 29 ) / 6
= 145/6
I hope this helps you.
:)
1/6 , 1/4 , 1/3 ,... are in A.P
first term = a = a1 = 1/6
common difference ( d ) = a2 - a1
d = 1/4 - 1/6
d = ( 3 - 2 ) / 12
d = 1/2
***********************************
we know that
1 ) n th term in A.P = tn = a + ( n - 1 )d
2 ) sum of n terms = Sn = n/2[ 2a + ( n - 1 )d ]
**********************************
1 ) a = 1/6 , d = 1/2 , n = 20
t20 = a + 19d
= 1/6 + 19 ( 1/2)
= 1/6 + 19/2
= ( 1 + 57 ) / 6
= 58/6
= 29/3
2 ) a = 1/6 , d = 1/2 , n = 10
S10 = ( 10/2 ) [ 2 × 1/6 + 9 × 1/2 ]
= 5 [ 1/3 + 9/2 ]
= ( 5/6 ) ( 2 + 27 )
= ( 5 × 29 ) / 6
= 145/6
I hope this helps you.
:)
Answered by
25
A.P,
1/6,1/4,1/3.....
here, a=1/6
d=t2-t1. or d=t3-t4
= 1/4-1/6. or = 1/3-1/4
= 2/24. or = 3-2/12
d = 1/12. or d = 1/12
tn= a+(n-1)d
t20=1/6+(20-1)1/12
=1/6+(19)1/12
=1/6+19/12
=2/12+19/12....... multiply 1/6 by 2/2
=2+19/12
=21/12
t20= 5.415
Sn=n/2(2a+(n-1)d)
=10/2(2×1/6+(20-1)1/12)
=5(1/3+(19)1/12)
=5(1/3+19/12)
=5(4/12+19/12)....multiply 1/3 by4/4
=5(4+19/12)
=5(23/12)
=5(1.915)
Sn=9.575
1/6,1/4,1/3.....
here, a=1/6
d=t2-t1. or d=t3-t4
= 1/4-1/6. or = 1/3-1/4
= 2/24. or = 3-2/12
d = 1/12. or d = 1/12
tn= a+(n-1)d
t20=1/6+(20-1)1/12
=1/6+(19)1/12
=1/6+19/12
=2/12+19/12....... multiply 1/6 by 2/2
=2+19/12
=21/12
t20= 5.415
Sn=n/2(2a+(n-1)d)
=10/2(2×1/6+(20-1)1/12)
=5(1/3+(19)1/12)
=5(1/3+19/12)
=5(4/12+19/12)....multiply 1/3 by4/4
=5(4+19/12)
=5(23/12)
=5(1.915)
Sn=9.575
Similar questions