Math, asked by AJAY241, 1 year ago

for an A.P a=6 and s10 =195show that sn-3:sn-8=n(n-3):(n-5)(n-8).

Answers

Answered by abhi178
1
first\:\: term ( a ) = 6 \\S_{10}=195
we know,
S_n =\frac{n}{2}[2a+(n-1)d]
where , d is common difference of AP
So, S_{10}=\frac{10}{2}[2\times6+(10-1)d]\\\\195=5[12+9d]\\39=12+9d\\d=3
now,
S_{n-3}= \frac{n-3}{2}[2\times6+(n-3-1)3]\\=\frac{n-3}{2}[12+3n-12]= \frac{3n(n - 3)}{2}

similarly,
S_{n-8}=\frac{n-8}{2}[2\times2+(n-8-1)3]\\=\frac{n-8}{2}[12+3n -27]\\=\frac{3(n-8)(n-5)}{2}
now,
S_{n-3}:S_{n-8}=n(n-3):(n-5)(n-8)
Similar questions