Math, asked by hamid3677, 11 months ago

for an A. P. if s10 =150 &s9 =126, t10? ​

Answers

Answered by Anonymous
16

Answer:

\large\bold\red{{ t}_{ 10}=24}

Step-by-step explanation:

Given,

In an A.P,

{ s}_{ 10} = 150

And,

{ s}_{9 } = 126

But,

We kniw that,

 \large \boxed{ \bold{{ s}_{n } =  \frac{n}{2} (a + l)}}

Where,

  • a = 1st term
  • l = Last term

Therefore,

We get,

 =  >  \dfrac{10}{2} (a + { t}_{ 10}) = 150 \\  \\  =  > a + { t}_{10 } =  \dfrac{150}{5}  \\  \\  =  > a + { t}_{10 } = 30 \:  \:  \:  \: .......(1)

And,

 =  >  \frac{9}{2} (a + { t}_{9 }) = 126 \\  \\  =  > a + { t}_{ 9} =  \dfrac{126}{9}  \times 2 \\  \\  =  > a + { t}_{9 } = 14 \times 2 \\  \\  =  > a + { t}_{ 9} = 28 \:  \:  \:  \: .......(2)

Subtracting eqn (2) from (1),

We get,

 =  > { t}_{ 10} - { t}_{ 9} = 2

Let,

  • Common difference = d

Therefore,

We get,

 =  > d = 2

Therefore,

We get,

 =  >  \frac{10}{2} (2a + 2(10 - 1)) = 150 \\  \\  =  > 2a + 18 = 30 \\  \\  =  > 2a = 30 - 18 = 12 \\  \\  =  > a =  \dfrac{12}{2}   \\  \\  =  > a = 6

Thus,

We have,

{ t}_{ 10} = a + 9d \\  \\  =  > { t}_{ 10} = 6 + (9 \times 2 )= 6 + 18 \\  \\  =  > \bold{ { t}_{ 10} = 24}

Similar questions