Math, asked by thomaskiran4353, 1 year ago

For an a.p.if t3=8 and t7=24,then t10 =

Answers

Answered by nain31
9
 \bold{For \: an \: AP \: }

 \huge\boxed{t_n = a + (n-1)d}

Let the first term be a

Common difference be d

Given,

 \mathsf{ t_7= 24}

 \mathsf{t_7= a + (7-1)d}

 \mathsf{24= a + 6d}------(1)

 \mathsf{t_3= 8}

 \mathsf{ t_3= a + (3-1)d}

 \mathsf{8= a + 2d}------(2)

On solving the eq 1.and 2

simultaneously,

 \mathsf{8= a + 2d}

\mathsf{ 24= a + 6d}

______________________

-16 = -4d

________________________

 \mathsf{\dfrac{-16}{-4} = d}

 \huge \boxed{\mathsf{4 = d}}

On placing value of d in eq 2

 \mathsf{8= a + 2\times 4}

 \mathsf{8 - 8= a}

 \huge \boxed{\mathsf{0= a}}

For tenth term,

 \mathsf{t_10= ?}

 \mathsf{t_10= 0 + (10 -1) \times 4}

 \mathsf{t_10= 0+ 9 \times 4}

 \huge \boxed{\mathsf{t_{10}= 36}}

athulyapc02: Beautiful answer didi❤
Similar questions