Math, asked by singhalkanishka89, 5 days ago

For an A.P. Sp = q Sq = p , then Sp+q = ​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given that,

The sum of first p terms of an AP is q and sum of first q terms is p.

To find the sum of first p + q terms of an AP.

Let assume that first term of an AP series is a and common difference is d.

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{{\boxed{\bf{{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

As it is given that,

\rm \: S_p = q \\

\rm \: \dfrac{p}{2}\bigg(2a + (p - 1)d \bigg)  = q \\

\rm\implies \:\rm \: 2ap + p(p - 1)d = 2q -  -  - (1) \\

Further given that,

\rm \: S_q = p \\

\rm \: \dfrac{q}{2}\bigg(2a + (q - 1)d \bigg)  = p \\

\rm\implies \:\rm \: 2aq + q(q - 1)d = 2p -  -  - (2) \\

On Subtracting equation (2) from equation (1), we get

\rm \: 2a(p - q) + d\bigg(p(p - 1) - q(q - 1)\bigg)  = 2q - 2p \\

\rm \: 2a(p - q) + d\bigg( {p}^{2} - p -  {q}^{2} + q  \bigg)  =  - 2(p - q) \\

\rm \: 2a(p - q) + d\bigg( {p}^{2}-  {q}^{2}  - p+ q  \bigg)  =  - 2(p - q) \\

\rm \: 2a(p - q) + d\bigg( (p - q)(p + q)  -( p -  q ) \bigg)  =  - 2(p - q) \\

\rm \: (p - q)\bigg(2a + d(p + q - 1) \bigg)  =  - 2(p - q) \\

\rm\implies \:2a + (p + q - 1)d =  - 2 -  -  - (3) \\

Now, Consider

\rm \: S_{p + q} \\

\rm \:=  \:  \:  \dfrac{p + q}{2}\bigg(2a + (p + q - 1)d \bigg)  \\

On substituting the value from equation (3), we get

\rm \:=  \:  \:  \dfrac{p + q}{2}\bigg( - 2\bigg)  \\

\rm \: =  \:  - (p + q) \\

Hence,

\rm\implies \: \boxed{\sf{  \:\:  \: \rm \: S_{p + q}  \:  =  \:  -  \: (p  \: +  \: q) \:  \:  \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\bigstar\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Answered by harshkhansole102
1

8×8=020

×8×5×8×=as

as=52/92

1029=ap

sp=1092 /8

239

Similar questions
Math, 2 days ago