For an Acute angle sin 3A° = cos (A – 6)°. Fine the value of A.
Answers
Sin3A = Cos ( A - 6 ) , where 3A and A - 6 are both acute angle then find value of A.
Solution---> ATQ,
Sin3A = Cos ( A - 6 )
We have a formula
Cosθ = Sin ( 90° - θ ) , applying it we get,
=> Sin3A = Sin { 90° - ( A - 6 ) }
=> Sin3A = Sin ( 90° - A + 6 )
=> 3A = 90° - A + 6
=> 3A + A = 96
=> 4A = 96
=> A = 96 / 4
=> A = 24°
Answer:
The value of A is 24°.
Step-by-step explanation:
Given :
➸ sin 3A° = cos (A – 6)°
➸ Both are acute angles
We know that :
➸ sin θ = cos (90 – θ)
So :
➸ sin 3A = cos (A – 6)
➸ cos (90 – 3A) = cos (A – 6)
Let's solve for "A" :
➸ 90 – 3A = A – 6
➸ 90 + 6 = A + 3A
➸ 96 = 4A
➸ 96/4 = A
➸ A = 24°
∴ The value of "A" is 24°.
Verification:
Let's substitute by taking A = 24° :
➸ sin 3A° = cos (A – 6)°
➸ sin 3 (24°) = cos (24° – 6)°
➸ sin 72° = cos 18°
➸ √(10+2√5/4) = √(10 + 2√5/4)
➸ LHS = RHS