Math, asked by charviii135, 7 months ago

for an AP, a= -10, d=4. find S¹0

Answers

Answered by atahrv
169

Answer :

   \large\boxed{ \star \:  \:  \bf{s_{10} \:  =  \:  80  \:  \:\star }}

Explanation :

Given :–

  • a = (-10)
  • d = 4

To Find :–

  • s_{10} \: (sum \: of \: first \: 10 \: terms)

Formula Applied :–

  •  \boxed{ \star \:  \:   \bf{s_n \:  =  \:  \dfrac{n}{2}[2a \:  +  \: (n \:  -  \: 1)d] } \:  \:  \star  }

Solution :–

We have ,

  • a = (-10)
  • d = 4
  • n = 10

Putting these values in the Formula :

  \rightarrow\sf{s_n \:  =  \:  \dfrac{n}{2}[2a \:  +  \: (n \:  -  \: 1)d]}

  \rightarrow\sf{s_{10} \:  =  \:  \dfrac{10}{2}[2( - 10) \:  +  \: (10\:  -  \: 1)(4)]}

  \rightarrow\sf{s_{10} \:  =  \:  5[( - 20) \:  +  \: (9 \:  \times  \: 4)]}

  \rightarrow\sf{s_{10} \:  =  \:  5[( - 20) \:  +  \: 36]}

  \rightarrow\sf{s_{10} \:  =  \:  5 \:  \times  \:16 }

  \rightarrow  \boxed{\bf{s_{10} \:  =  \:  80 }}

∴ The Sum of 10 Terms will be 80 .

Answered by AdorableMe
64

Given

In an AP,

  • a = -10
  • d = 4

To Find

The value of S₁₀ (The sum of first 10 terms of the given AP).

Solution

We know,

\boxed{\rm{S_n=\frac{n}{2}[2a+(n-1)d]}}

Now, using the above formula :-

\rm{\longrightarrow S_{10}= \dfrac{10}{2}[2(-10)+(10-1)4]  }\\\\\rm{\longrightarrow S_{10}=  5[-20+4(9)]}\\\\\rm{\longrightarrow S_{10}=  5(-20+36)}\\\\\rm{\longrightarrow S_{10}=  5\times16}\\\\\huge\underline{\overline{\mid{\bold{ \orange{S_{10}=80}}\mid}}}

Therefore, the sum of first 10 terms is 80.

Similar questions