Math, asked by ashishchoudhary22, 7 months ago

For an AP, a3 = 7, d = 4, sn = 740, find n and an


Plz solve full Q3 ​

Attachments:

Answers

Answered by Anonymous
0

Given:

  •  \sf a_{3} = 7
  •  \sf d = 4
  •  \sf S_{n} = 740

To Find:

  •  \sf n \: and  \: a_{n}

Solution :

 \sf \: \sf \longrightarrow \: a_{3} = 7 \\  \sf \: \sf \longrightarrow \: a + 2d = 7 \\  \sf \longrightarrow\sf \: a + 2(4) = 7 \: ... \{ \because \: d = 4 \} \\ \sf \longrightarrow \sf \: a = 7 - 6 \\    \sf \: \sf \longrightarrow \: a = 1 \\ \sf \longrightarrow \small{\boxed{\sf \: a_{n} = a =  1  }}

Now,

 \sf \longrightarrow \:  </u></strong><strong><u>S</u></strong><strong><u>_{n} =  \dfrac{n}{2}  \{2a + (n - 1)d \} \\  \\  \sf \longrightarrow740 =  \dfrac{n}{2}  \{2(1) + (n - 1)4 \} \\  \\ \sf \longrightarrow \: 740 =  \dfrac{n}{2}  (2 + 4n - 4 )\\  \\ \sf \longrightarrow \: 740 =  \dfrac{n}{2} (4n - 2) \\  \\ \sf \longrightarrow \: 1480 = n(4n - 2)\\  \\ \sf \longrightarrow \:  \small{\boxed{ \sf \: n =  \frac{1480}{4n - 2} }}

Similar questions