Math, asked by visheshtrivedi6358, 6 months ago

For an AP, if a↓n=4,d=2 and s↓n=-14 find n and a?​

Answers

Answered by ajay8949
3

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \binom{a}{ \:  \:  \: n}  = 4

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: d \:  = 2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \binom{s}{ \:  \:  \: n}  =  - 14

 \:  \:  \:  \boxed{ \:  \:  \:  \:  \:  \:  \:  \:  \binom{a}{ \:  \:  \: n}  = a + (n - 1)d}

 \:    \:  :  ⟹ \  \: 4 = a + (n - 1)2

 \:  \:  \:  \:  \:  : ⟹4 = a + 2n - 2

 \:  \:  \:  \:  \:  \:  \:  \:  : ⟹a + 2n = 6 \:  \:  \: \:  \:  \:  \:  \:  \:  \:  (i)

 \:  \:  \:   \boxed{  \binom{s}{ \:  \:  \: n} =  \frac{n}{2}  (2a + (n - 1)d) }\\

 \:  \:  : ⟹ \:  - 14 =  \frac{n}{2} (2a + (n - 1)2)

 \:  \:  \:  \:  \: :⟹ - 28 = n(2a + 2n - 2)

 \:  \:  \:  \:  \:  \:  \:  \:   : ⟹ \frac{ - 28}{ \:  \: n}  = 2a + 2n - 2 \:  (ii)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: from \: equation \: 1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed {a = 6 - 2n}

 \:  \: substituting \: value \: of \: a \: in \: eq {}^{2}

 : ⟹ \:  \:  \frac{ - 28}{ \:  \: n}  = 2(6 - 2n) + 2n - 2

  : ⟹ \frac{ - 28}{ \:  \: n}  = 12 - 4n + 2n - 2

  \:  \:  \:    \: : ⟹  \frac{ - 28}{ \:  \: n}  = 10 - 2n

 \:  \:  \:  \:   \:  \:   \:  \: :⟹  \: 10n - 2 {n}^{2}  =  - 28

 \:  \:  \:  \:   : ⟹2 {n}^{2}  - 10n - 28 = 0

  \:  \:  \:    \  : ⟹2 {n}^{2}   + 4n  - 14n - 28 = 0

 \:  :  ⟹ \: 2n(n  +  2)   - 14(n + 2)  = 0

 \:  \:  \:  \:  \:  \ : ⟹ \:  \:  (2n - 14)(n + 2) = 0

 \:  \:  \:  \:  \:  \:  \:  : ⟹n = 7 \: and \:  - 2

as \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a =  6 - 2n

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: n = 7 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \  :⟹  \:  \:  \:  \:  \:  a = 6 - 14 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: :⟹  \:  \:  \:  \boxed{a = -  8 }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  n =  - 2 \\ \:  \ \:  \:  \:  \:  \:  \:  \:  \:  \:   : ⟹ \:  a = 6  + 2 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: : ⟹   \boxed{a = 8}

\mathcal\orange{Please\:mark\:as\:brainliest.....}

Answered by Anonymous
14

Given:-

  • \sf{a_n = 4}
  • d = 2
  • \sf{S_n = -14}

To Find:-

The value of n and a

Solution:-

We know,

\sf{a_n = a + (n-1)d}

Substituting the value,

\sf{4 = a + (n-1)\times 2}

= \sf{4 = a + 2n - 2}

= \sf{4+2 = a+2n}

= \sf{6 = a+2n}

=> \sf{a = 6-2n \longrightarrow(i)}

Now,

Now,We also know,

\sf{S_n = \dfrac{n}{2}[2a + (n-1)d]}

= \sf{-14 = \dfrac{n}{2}[2a + (n-1)\times 2]}

= \sf{-14\times 2 = n[2(6-2n) + 2n - 2]\:\:\:\:\:[From\:Eq.(i)]}

= \sf{-28 = n[12- 4n + 2n - 2]}

= \sf{-28 = n[12 - 2n - 2]}

= \sf{-28 = n[10 - 2n]}

= \sf{-28 = 10n - 2n^2}

= \sf{-28 = 2(5n - n^2)}

= \sf{\dfrac{-28}{2} = 5n - n^2}

= \sf{-14 = 5n - n^2}

= \sf{n^2 - 5n - 14 = 0}

By splitting the middle term,

= \sf{n^2 - 7n + 2n - 14 = 0}

= \sf{n(n-7) + 2(n-7) = 0}

= \sf{(n-7)(n+2) = 0}

Either,

\sf{n-7 = 0}

= \sf{n = 7}

Or,

\sf{n+2 = 0}

= \sf{n= -2}

Negative value of n cannot be taken.

\sf{\therefore} n = 7

Putting the value of n in Eq.(i)

= \sf{a=6-2n}

= \sf{a=6-2\times 7}

= \sf{a=6-14}

= \sf{a= -8}

Therefore,

The value of a = -8

The value of n = 7

______________________________________

Similar questions