Math, asked by skysweetwini4481, 1 year ago

For an AP if s10 = 150 and s9 = 126, t10 = ?


BrainlyKing5: Is The Answer = 24 ??

Answers

Answered by isafsafiya
19

Answer:

t_{10}  = 24

Step-by-step explanation:

Given:-

 s_{10} = 150 \\  s_{9} = 126 \\  t_{10} =  \\  \\ now \: as \: we \: know \\  \\ s_{n}  =  \frac{n}{2} (2a + (n - 1)d) \\  \\ s_{10}  =  \frac{10}{2} (2a + (10 - 1)d) \\  \\  150 = 5(2a + 9d) \\  \\  \frac{150}{5}  = (2a + 9d) \\  \\ (2a + 9d) = 30\:  \:  \: .................(1) \\  \\  \\ s_{n}  = \frac{n}{2} (2a + (n - 1)d) \\  \\ s_{9}  =  \frac{9}{2} (2a + (9 -1 )d \\  \\ 126 =  \frac{9}{2} (2a + 8d) \\  \\  \frac{126 \times 2}{9}  = (2a + 8d) \\  \\ (2a + 8d) = 28 \:  \: ...............(2) \\  \\ now \: substract \: equation \: 1 \:  \: and \: 2 \\  \\  \:  \:  \: 2a + 9d = 30 \\  -  \: 2a + 8d = 28 \\  -  -  -  -  -  -   -  \\ d = 2 \\  \\ now \: put \: d \:  = 2 \: in \: equation \:  \: 1 \\  \\ 2a + 9d = 30 \\  \\ 2a + 9 \times 2 = 30 \\ 2a = 30 - 18 \\  \\ 2a = 12 \\  \\ a =  \frac{12}{2}  \\ a = 6 \\  \\  \\ now \: we \: have \: a = 6 \: and \: d = 2 \\  \\ there \: for \\  \\ as \: we \: know \\  \\  t_{n} = a + (n - 1)d \\  \\ t_{10} = 6 + (10 - 1) \times 2 \\ t_{10}  = 6 + 9 \times 2 \\ t_{10}  = 6 + 18 \\  \\ t_{10}  = 24

Answered by harendrachoubay
10

t_{10} =24

Step-by-step explanation:

Let the first term = a and common difference = d

Given,

s_{10} = 150 and s_{9} = 126

To find, the value of t_{10}= ?

We know that,

The sum of nth term of an AP

s_{n} =\dfrac{n}{2}{2a+(n-1)d}

s_{10} =\dfrac{10}{2}[2a+(10-1)d]

5[2a+9d]=150

2a+9d=30             ....... (1)

Also, s_{9}=\dfrac{9}{2} [2a+8d]

a+4d=\dfrac{126}{9} =14     ....... (2)    

Multiplying (2) by 2 and and subtracting (1), we get

9d - 8d = 30 - 28 = 2

⇒ d = 2

Put d = 2 in equation (1), we get

2a+9(2)=30

⇒ 2a = 30 - 18

⇒ a = 6

∴ The 10th term of an AP

t_{10} =a+9d

= 6 + 9 (2)

= 6 + 18 = 24

Hence, t_{10} =24

Similar questions