Math, asked by xyzabc25, 11 months ago

for an ap,if t7=32,t13=62,find t30​

Answers

Answered by Nitish321
3

Answer:

let \: the \: first \: term \: of \: ap \: is \: a \: and \: common \: difference \: is \: d \\ now \: t7 = a + (7 - 1)d \:  = 32 -  -  -  -  - (1) \\ t13 = a + (13 - 1)d = 62 -  -  -  -  -  - (2) \\ now \: by \: (2) -  (1) \:  \\6d = 30 \\ or \: d = 5 \\ puting \: the \: value \: of \: d \: in \: eqation\: (1) \\ a = 2 \\ so \: t30 \:  = a + 29d = 2 + 29 \times 5 = 147

i hope you will understand....

Answered by Anonymous
10

GIVEN :

 \sf {t}_{7} =   a + 6d= 32 \\  \\  \sf{t}_{13} = a + 12d = 62

SOLUTION :

 \sf By  \: subtracting \: {t}_{7} \: from \:  {t}_{13} \\  \\  \sf a + 12d  - (a + 6d) = 62 - 32 \\  \\ \sf \cancel{ a }+ 12d  \: \cancel{ - a }- 6d = 30 \\  \\  \sf 6d = 30 \\  \\ \large \boxed{  \sf  \blue{d = 5}} \\  \\  \sf put \: value \: of \: d \: in \:  {t}_{7}  \\  \\ \sf a + 6 \times 5 = 32 \\  \\  \sf a = 32 - 30 \\  \\ \large \boxed{ \sf \green{ a  = 2}}

 \sf {t}_{30} = a + 29d \\  \\ \sf   {t}_{30} = 2 + 29 \times 5 \\  \\   \large \boxed{ \sf \orange{{t}_{30} = 147}}

Similar questions