Math, asked by Dhruma, 1 year ago

for an ap t12 = 64 t20 = 112 find an ap​

Answers

Answered by Anonymous
7

Given:

\\\\

t_{12} = 64 \:  \\   t_{20} = 112 \\  \\  \\

To Find:

\\\\

The terms of AP.

\\\\\\

Answer:

\\\\

The General term of an AP is given by the formula :

\\

t_n = a + (n - 1)d \\  \\

The 12_{th} term is given as:

\\

t_{12} = a + (12 - 1)d \:  \:  \:  \:  \\  64= a + 11d  \:  \:  ......(1)  \\  \\

Similarly,

The 20_{th} term is given as:

\\

 t_{20} = a + (20 - 1)d \\  112 = a + 19d  \: \: ....(2) \\  \\

Subtracting equation (1) from (2), we get:

\\\\

a + 19d - a - 11d = 48\\

8d = 48\\

d =  \dfrac{48}{8}  \\ d = 6 \:  \:  \:  \:  \\  \\

Substituting the value of d in equation (1) , we get:

\\\\

a + 11*6 = 64\\

a + 66 = 64\\

a = 64 - 66\\

a = -2\\\\

AP = -2 , 4 , 10 , 16 , .... \\\\\\

Other AP Formulas:

\\\\\\

nth term of an AP formulas

\\\\\sf 1) \: n_{th} \: term \: of \: any \: AP \: = a + (n - 1)d\\

\sf 2) \:n_{th} \: term \: from \: the \: end \: of \: an \: AP \: = a + (m - n)d\\

\sf 3) \:n_{th} \: term \: from \: the \: end \: of \: an \: AP = l - (n - 1)d\\

\sf 4) \: Difference \: of \: two \: terms = (m - n)d\\

where m and n is the position of the term in AP\\

\sf 5) \:Middle\: term\:of\: a\: finite\: AP\:

\sf (i) \:\: If \: n \: is \: odd = \frac{n + 1}{2}\:th\:term

\sf (ii) \:\: If \: n \: is \: even = \frac{n}{2} \:th \: term \: and \: ( \frac{n}{2} + 1)th \: term\\

\\\\

Sum Formulas

\\\\

\sf 1) \: Sum \: of \: first \: n \: terms \: of \: an \:AP = \frac{n}{2} [ \: 2a + (n - 1)d \: ]\\

\sf 2) \: Sum \: of \: first \: n \: natural \: numbers = \frac{n(n + 1)}{2}\\

\sf 3) \: Sum \: of \: AP \: having \: last \: term = \frac{n}{2} [ \: a + l \: ]\\

Similar questions