Math, asked by navjot62840203, 7 months ago

For an AP T5=26 and T10=51 find T15.

Attachments:

Answers

Answered by DevyaniKhushi
3

Given, For an AP,

 \rm{}t_{ \tiny{5}} = 26 \\  \rm{}t_{ \tiny{10}} = 51

 \bull \:  \:  \text{To find } : \:  \green{ \rm{}t_{ \tiny{15}}}

We know,

 \orange{ \rm{}t_{ {n}} = a + (n - 1)d}

  • where, a is the first term, d is common difference, and n is the number of terms in the AP

So,

 \rm{}t_{ \tiny{5}} = a + (5 - 1)d = 26 \\   =  > a + 4d = 26 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \cdot\cdot\cdot\cdot(1)

And,

 \rm{}t_{ \tiny{10}} = a + (10 - 1)d  = 51 \\  =  > a + 9d = 51\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \cdot\cdot\cdot\cdot(2)

Now, Subtracting Equation 2 from Equation 1

 =  > a + 4d - (a + 9d) = 26 - 51 \\  =  >  \cancel{a} + 4d - \cancel{a}  - 9d =  - 25 \\   =  >  \:  \:  \:  \:  \:  \:  \cancel- 5d = \cancel - 25 \\  =  >  \:  \:  \:  \:  \:  \:5d = 25 \\ \\   =  >  \frac{\cancel5d}{\cancel5}  =  \frac{25}{5}  \\  \\  =  >  \:  \:  \:  \:  \:  \:d =  \green5

So, Putting value of d in equation 1 ,

 =  > a + 4d = 26 \\  =  > a + 4(5) = 26 \\  =  > a + 20 = 26 \\ =  >   \:  \:  \:  \:  \: a = 26  -  20 \\  =  >  \:  \:  \:  \:  \: a =  \green6

Thus,

 =  > \rm{}t_{ \tiny{15}} = a + (15 - 1)d \\ =  > \rm{}t_{ \tiny{15}}   =   6 + 14(5) \\ =  > \rm{}t_{ \tiny{15}}   =   6 + 70 \:  \:  =  \pink{76}

Answered by psupriya789
0

your answer is perfectly correct

Similar questions