Math, asked by shashankgumgaonkar4, 10 months ago

For an given A.P t6 =12 d=3 then a=​

Answers

Answered by sweetyrasgotra211
4

Answer:

Hii..

ur answer...

..

t6 = a + (n-1)d

12 = a + (6-1)3

12 = a + 15

a = 12 - 15

=> a = -3

..

Thankyou...

Answered by dhruv220605
1

Answer:

plz " FOLLOW " me...

plz " BRAINLIEST " me..

Step-by-step explanation:

Answer:

Answer:Given that

Answer:Given thatIn an Arithmetic Progression (A. P) -

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),8 = a + 2d

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),8 = a + 2d⇒ 8 = a + 2 * 5

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),8 = a + 2d⇒ 8 = a + 2 * 5⇒ 8 = a + 10

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),8 = a + 2d⇒ 8 = a + 2 * 5⇒ 8 = a + 10⇒ a = 8 - 10

Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),8 = a + 2d⇒ 8 = a + 2 * 5⇒ 8 = a + 10⇒ a = 8 - 10⇒ a = - 2

Similar questions