For an given A.P t6 =12 d=3 then a=
Answers
Answer:
Hii..
ur answer...
..
t6 = a + (n-1)d
12 = a + (6-1)3
12 = a + 15
a = 12 - 15
=> a = -3
..
Thankyou...
Answer:
plz " FOLLOW " me...
plz " BRAINLIEST " me..
Step-by-step explanation:
Answer:
Answer:Given that
Answer:Given thatIn an Arithmetic Progression (A. P) -
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),8 = a + 2d
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),8 = a + 2d⇒ 8 = a + 2 * 5
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),8 = a + 2d⇒ 8 = a + 2 * 5⇒ 8 = a + 10
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),8 = a + 2d⇒ 8 = a + 2 * 5⇒ 8 = a + 10⇒ a = 8 - 10
Answer:Given thatIn an Arithmetic Progression (A. P) -t₃ = 8t₁₀ = t₆ + 20For t₃ = 8 :-tₙ = a + (n - 1)d⇒ t₃ = a + ( 3 - 1 )d⇒ 8 = a + 2d... (i)For t₁₀ = t₆ + 20 :-⇒ a + 9d = a + 5d + 20⇒ a + 9d - a - 5d = 20⇒ 4d = 20⇒ d = \frac{20}{4}⇒ d = 5.....(ii)Substituting the value of (ii) in (i),8 = a + 2d⇒ 8 = a + 2 * 5⇒ 8 = a + 10⇒ a = 8 - 10⇒ a = - 2