Physics, asked by ramasharmars123, 6 months ago

For an SHM, graph between velocity (v) and displacement (x), in general is
Select one:
O a. Straight line
O b. Parabolic
O c. Hyperbolic
O d. Elliptical​

Answers

Answered by Anonymous
18

Answer:

 \boxed{\mathfrak{d. \ Elliptical}}

Explanation:

Simple pendulum executes SHM for small displacements

 \rm x = Asin \omega t

Velocity:

 \rm \implies v =  \dfrac{dx}{dt}  \\  \\  \rm \implies v =  \dfrac{d}{dt} (Asin \omega t) \\  \\ \rm \implies v =  A \omega cos \omega t

Squaring the displacement equation:

 \rm \implies x ^{2}  = A ^{2} sin  ^{2} \omega t \\  \\ \rm sin  ^{2} \omega t  = 1 - cos  ^{2} \omega t  \\  \\  \rm \implies x ^{2}  = A ^{2} (1 - cos  ^{2} \omega t ) \\  \\ \rm \implies x ^{2}  = A ^{2}- A ^{2}cos  ^{2} \omega t  \\  \\ \rm \implies A ^{2}cos  ^{2} \omega t =   A ^{2} -  {x}^{2}  \\  \\ \rm \implies cos  ^{2} \omega t =    \dfrac{ A ^{2} -  {x}^{2}  }{A ^{2}} \\  \\ \rm \implies cos  ^{2} \omega t =   1 -  \dfrac{  {x}^{2}  }{A ^{2}} \\  \\ \rm \implies cos   \omega t =  \sqrt{  1 -  \dfrac{  {x}^{2}  }{A ^{2}}}

So,

\rm \implies v =  A \omega  \sqrt{1 -  \dfrac{ {x}^{2} } {A ^{2}  } }  \\  \\ \rm \implies v =  A \omega  \sqrt{ \dfrac{A ^{2} -  {x}^{2} } {A ^{2}  } }  \\  \\ \rm \implies v =   \cancel{A} \omega   \dfrac{ \sqrt{ A ^{2} -  {x}^{2}} } { \cancel{A  } }  \\  \\ \rm \implies v =    \omega    \sqrt{ A ^{2} -  {x}^{2}}  \\  \\ \rm \implies v ^{2}  =    \omega^{2}    (  A ^{2} -  {x}^{2}) \\  \\ \rm \implies  \dfrac{ v ^{2} }{\omega^{2}} =        (  A ^{2} -  {x}^{2}) \\  \\ \rm \implies  {x}^{2} + \dfrac{ v ^{2} }{\omega^{2}}  = A ^{2} \\  \\  \rm \implies   \dfrac{{x}^{2}}{A ^{2}} + \dfrac{ v ^{2} }{A ^{2}\omega^{2}}  =  \frac{ A ^{2}}{A ^{2}} \\  \\   \rm \implies   \dfrac{{x}^{2}}{A ^{2}} + \dfrac{ v ^{2} }{A ^{2}\omega^{2}}  =  1

This equation represents ellipse.

Answered by mangalasingh00978
5

Answer:

x=Asinωt or sinωt=x/A

v=dx/dt=Aωcosωt or cosωt=v/Aω

Thus, using sin

2

+cos

2

=1, x

2

/A

2

+x

2

/A

2

ω

2

=1, which gives the equation of ellipse.

Thus statement 1 is correct. Also, statement 2 is correct but it doesn't explain the reason

Similar questions