Math, asked by Mersal125, 8 months ago

For any angle x, show that acosx=bcos(C+X)+c cos(B-x) [Properties of triangle]

Answers

Answered by JustaHelper3
3

Answer:

bcos(A−θ)+acos(B+θ)

=b(cosA.cosθ+sinA.sinθ)+a(cosB.cosθ−sinB.sinθ)

=cosθ(bcosA+acosB)+sinθ(bsinA−asinB)

=cosθ(c)+sinθ(b

2R

a

−a

2R

b

) [Since acosB+bcosA=c and using sine law of triangle]

=ccosθ.

Answered by pulakmath007
6

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

SINE LAW OF TRIANGLES

 \displaystyle \:  \frac{a}{ \sin A }  = \frac{b}{ \sin B} = \frac{c}{ \sin C} =  {2R}

2.

b   \cos C  + c \: \cos B = a

TO PROVE

For any angle x

a \cos x = b \cos \: (C + x) + c \cos (B - x)

PROOF

RHS

 = b \cos \: (C + x) + c \cos (B - x)

 =  b (\cos C  \cos x -\sin C  \sin x ) + c \: ( \cos B  \cos x + \sin B  \sin x)

 =  \cos x(b   \cos C  + c \: \cos B )-  \sin x  ( b   \sin C   -  c \: \sin B)

 \displaystyle \:  =   \cos x \times a-  \sin x  ( b    \times  \frac{c}{2R}    -  c \: \times  \frac{b}{2R} )

 \displaystyle \:  =   a\cos x -  \sin x  \times  (  \frac{bc}{2R}    -   \frac{bc}{2R} )

 \displaystyle \:  =   a\cos x -  \sin x  \times   0

 \displaystyle \:  =   a\cos x

= LHS

Hence proved

Similar questions