Math, asked by kritikashaktawat24, 9 months ago

for any complex number z prove that Re(z) = z+z'/2 and I'm(z) =z-z'/2i

Answers

Answered by MaheswariS
8

\underline{\textbf{To prove:}}

\textsf{For any complex number z,}

\mathsf{Re(z)=\dfrac{z+z'}{2}\;\;\&\;\;Im(z)=\dfrac{z-z'}{2i}}

\underline{\textbf{Solution:}}

\mathsf{Let\;z=a+i\,b}

\mathsf{Here,\;Re(z)=a\;\7\;Im(z)=b}

\mathsf{Then,\;z'=a-i\,b}

\mathsf{z+z'=(a+i\,b)+(a-i\,b)}

\mathsf{z+z'=2\;a}

\mathsf{z+z'=2\;Re(z)}

\implies\boxed{\mathsf{Re(z)=\dfrac{z+z'}{2}}}

\mathsf{z-z'=(a+i\,b)-(a-i\,b)}

\mathsf{z-z'=a+i\,b-a+i\,b}

\mathsf{z-z'=2i\,b}

\mathsf{z-z'=2i\,Im(z)}

\implies\boxed{\mathsf{Im(z)=\dfrac{z-z'}{2i}}}

\underline{\textbf{Find more:}}

Write (a+ib/a-ib)^2-(a-ib/a+ib)^2 in the form x +iy please reply me this

https://brainly.in/question/18153048

Answered by alonenoob
2

Answer:

Let z=a+ib

then,z'=a-ib

Re(z)=a

Im (z)=b

Z+Z'=a+ib+a-ib

or,Z+Z'=2a

or,Z+Z'=2Re(z)

or,Re(z)=z+z'/2

Now,

Z-Z'=a+ib-a+ib

or,Z-Z'=2ib

or,Z-Z'=2i I'm(z)

or,Im(z)=Z-Z'/2i

hence ,proved

Similar questions