for any positive integer n,prove that n^3-n is divisible by 6
Answers
Answer :-
step-by-step explanation :-
n³ - n = n (n² - 1) = n (n - 1) (n + 1)
Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.
∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.
If n = 3p, then n is divisible by 3.
If n = 3p + 1, then n – 1 = 3p + 1 –1 = 3p is divisible by 3.
If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.
So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 3.
⇒ n (n – 1) (n + 1) is divisible by 3.
Similarly, whenever a number is divided 2, the remainder obtained is 0 or 1.
∴ n = 2q or 2q + 1, where q is some integer.
If n = 2q, then n is divisible by 2.
If n = 2q + 1, then n – 1 = 2q + 1 – 1 = 2q is divisible by 2 and n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.
So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 2.
⇒ n (n – 1) (n + 1) is divisible by 2.
Since, n (n – 1) (n + 1) is divisible by 2 and 3.
n (n-1) (n+1) = n³ - n is divisible by 6.( If a number is divisible by both 2 and 3 , then it is divisible by 6)
Hence, it is proved.
Solution :-
Let n³ - n be a.
a = n³ - n
→ n(n² - 1)
→ n(n - 1)(n + 1)
→ (n - 1)n (n + 1)
1) Now out of three (n - 1), n and (n + 1) one must be even. So, a is divisible by 2.
2) Also (n - 1),n and (n + 1) are three consecutive integers. Thus As Proved, a must be divisible by 3.
From (1) and (2),
a must be divisible by 2 × 3 = 6
Hence n³ - n is divisible by 6 for any positive integer n.