Math, asked by katiekhiangte8152, 1 year ago

For any sets a and b , prove that : p(a) u p(b) is subset p(aub)

Answers

Answered by MaheswariS
17

\textbf{Given:}

\text{A and B are two sets}

\textbf{To prove:}

\wp(A)\cup\wp(B)\;{\subseteq}\;\wp(A{\cup}B)

\text{Here, $\wp(A)$ is power set of A}

\text{Let $C\,{\in}\,\wp(A)\cup\wp(B)$}

\implies\;C\,{\in}\,\wp(A)\;\text{or}\;C\,{\in}\,\wp(B)

\implies\;C\,{\subseteq}\,A\;\text{or}\;C\,{\subseteq}\,B

\implies\;C\,{\subseteq}\,A{\cup}B

\implies\;C\,{\in}\,\wp(A{\cup}B)

\therefore\bf\wp(A)\cup\wp(B)\,{\subseteq}\,\wp(A{\cup}B)

\textbf{Hence proved}

\textbf{Find more:}

If the number of non-empty subsets of a set is 4095 then the number of elements of the set is option A 10 option b 11 options C12 option d13​

https://brainly.in/question/13119955

Answered by Kannan0017
4

Answer:

Step-by-step explanation:

Similar questions