Math, asked by aakashpatelyahooin, 10 months ago

For any square matrix A,if A²-3A+4i=0 then A−1=...........

Answers

Answered by deraamaechina
1

Answer:

HRRWTGUBAJKd>

Step-by-step explanation:KZLJXKCJUDSUL

Answered by qwblackurnrovers
0

A^{-1} = \left[\begin{array}{ccc}-1/2&1/4\\-1/2&-1/4} \\\end{array}\right]

Given:

For a square matrix A, A²-3A+4i=0

To Find:

The value of A^{-1} from the given question

Solution:

(A²-3A+4i) A^{-1} = OA^{-1}

A(AA^-1) + 3I +4A^{-1} = O

A + 3I  +4A^{-1} = O

4A^{-1} = -A-3I+O

A^{-1} = 1/4{ -A-3I}]

A^{-1} = \frac{1}{4} \left[\begin{array}{ccc}1-3&1+0\\-2+0&2-3} \\\end{array}\right]

A^{-1} = \left[\begin{array}{ccc}-1/2&1/4\\-1/2&-1/4} \\\end{array}\right]

Hence, we get the value of A^{-1} =  \left[\begin{array}{ccc}-1/2&1/4\\-1/2&-1/4} \\\end{array}\right]

#SPJ2

Similar questions