Math, asked by joshuaaameh, 11 months ago

For any square matrix A, show that AA' is symmetric.

Answers

Answered by yassersayeed
0

let A be any matrix.

.\text { Also let } \mathrm{B}=\mathrm{AA}^{\mathrm{'}}\\\text { Now } \mathrm{B}^{\mathrm{'}}=\left(\mathrm{AA}^{\mathrm{'}}\right)^{\mathrm{'}}=\left(\mathrm{A}^{\mathrm{'}}\right)^{\mathrm{'}} \mathrm{A}^{\mathrm{'}}=\mathrm{AA}^{\mathrm{'}}=\mathrm{B} .\left[\text { Since }\left(\mathrm{A}^{\mathrm{'}}\right)^{\mathrm{'}}=\mathrm{A}\right]

\text { So } \mathrm{AA}^{\mathrm{'}} \text { is a symmetric matrix. }

Similar questions