Math, asked by PRACHISHETTY4921, 1 year ago

for any three vectors a b c prove that a-b b-c c-a are coplanar

Answers

Answered by abhi178
58
we know, three vector \vec{x},\vec{y} and \vec{z} are said to be coplanar when \vec{x}.(\vec{y}\times\vec{z})

here, \vec{x}=\vec{a}-\vec{b}

\vec{y}=\vec{b}-\vec{c}

and \vec{z}=\vec{c}-\vec{a}

now, (\vec{a}-\vec{b}).\{(\vec{b}-\vec{c})\times(\vec{c}-\vec{a})\}

= (\vec{a}-\vec{b}).\{\vec{b}\times\vec{c}-\vec{b}\times\vec{a}-\vec{c}\times\vec{c}+\vec{c}\times\vec{a}\}

= (\vec{a}-\vec{b}).\{\vec{b}\times\vec{c}-\vec{b}\times\vec{a}+\vec{c}\times\vec{a}\}

= [\vec{a}\vec{b}\vec{c}]-0-0-0-0-[\vec{a}\vec{b}\vec{c}]

here, [\vec{a}\vec{b}\vec{c}] means, \vec{a}.(\vec{b}\times\vec{c})

= 0

hence, \vec{a}-\vec{b},\vec{b}-\vec{c} and \vec{c}-\vec{a}
Similar questions