For any triangle abc, prove that acosa + bcosb + ccosc = 2asinbsinc
Answers
Answered by
6
Here is your answer buddy,
aCosA+bCosB+cCosC = 2aSinBCosC
aCosA+bCosB+cCosC
=2R sinA cosA +2R SinB CosB + 2R Sin C CosC (From Sine rule)
=R(2 sinA cosA +2 SinB CosB + 2 Sin C CosC)
=R (Sin2A+Sin2B+Sin2C)
=R(2Sin (A+B)Cos(A-B)+2SinCCosC)
=R [ 2 SinC Cos(A-B) + 2SinC CosC]
=2RSinC[Cos(A-B)+CosC]
=2RSinC[Cos(A-B)-Cos(A+B)]
=2R SinC [ 2 SinA Sin B]
=(2R SinA) (2SinB SinC)
=a (2 SinB SinC)
=2a Sin B SinC
Hope this helps.
Be Brainly.
aCosA+bCosB+cCosC = 2aSinBCosC
aCosA+bCosB+cCosC
=2R sinA cosA +2R SinB CosB + 2R Sin C CosC (From Sine rule)
=R(2 sinA cosA +2 SinB CosB + 2 Sin C CosC)
=R (Sin2A+Sin2B+Sin2C)
=R(2Sin (A+B)Cos(A-B)+2SinCCosC)
=R [ 2 SinC Cos(A-B) + 2SinC CosC]
=2RSinC[Cos(A-B)+CosC]
=2RSinC[Cos(A-B)-Cos(A+B)]
=2R SinC [ 2 SinA Sin B]
=(2R SinA) (2SinB SinC)
=a (2 SinB SinC)
=2a Sin B SinC
Hope this helps.
Be Brainly.
Answered by
9
Using rule of sine
a = psinA
b = psinB
c = psinC
Now,
LHS
= acosA + bcosB + ccosC
= p sinA cos A + psinB cosB + psinC cos C
= p{sin(A + B) cos(A - B) + sinC cosC}
= p{sin(π - C) cos(A - B) + sinC cosC}
= psin C{cos(A - B) + cos C}
= p sin C[cos (A - B) + cos{π - (A + B)}]
= psin C{cos(A - B) - cos(A + B)}
= psin C × 2sinAsinB
= 2(psinA)sinBsinC
= 2asinBsinC
Hence proved
Similar questions
Math,
7 months ago
Chemistry,
7 months ago
Hindi,
7 months ago
Hindi,
1 year ago
Psychology,
1 year ago