Math, asked by juhi2503, 16 hours ago

for any triangle ABC, prove that (b sq. - c sq.) cotA+ (c sq.- a sq.) cot B+ (a sq. - b sq.) cot C=0​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider,

\rm \: ( {b}^{2} -  {c}^{2})cotA + ( {c}^{2} -  {a}^{2})cotB + ( {a}^{2} -  {b}^{2})cotC \\

Now, Consider first term,

\rm \: ( {b}^{2} -  {c}^{2})cotA  \\

By sine Law, we have

\rm \: \dfrac{a}{sinA}  = \dfrac{b}{sinB} =  \dfrac{c}{sinC}  = k \\

So, we have

\rm \: b = k \: sinB \\

\rm \: c = k \: sinC \\

So, on substituting these values, we get

\rm \:  =  \: ( {k}^{2} {sin}^{2}B -  {k}^{2} {sin}^{2}C)cotA \\

\rm \:  =  \: {k}^{2} ({sin}^{2}B - {sin}^{2}C)cotA \\

\rm \:  =  \: {k}^{2}sin(B + C)sin(B - C)cotA \\

\rm \:  =  \: {k}^{2}sin(\pi - A)sin(B - C)cotA \\

\rm \:  =  \: {k}^{2}sinAsin(B - C) \times  \frac{cosA}{sinA}  \\

\rm \:  =  \: {k}^{2}sin(B - C)cosA  \\

\rm\implies \:( {b}^{2} -  {c}^{2})cotA =  \: {k}^{2}sin(B - C)cosA  \\

Similarly,

\rm\implies \:( {c}^{2} -  {a}^{2})cotB =  \: {k}^{2}sin(C - A)cosB  \\

Similarly,

\rm\implies \:( {a}^{2} -  {b}^{2})cotC =  \: {k}^{2}sin(A - B)cosC  \\

On adding above three equations, we get

\rm \: ( {b}^{2} -  {c}^{2})cotA + ( {c}^{2} -  {a}^{2})cotB + ( {a}^{2} -  {b}^{2})cotC \\

\rm \:  =  {k}^{2}sin(B - C)cosA +  {k}^{2}sin(C - A)cosB +  {k}^{2}sin(A - B)cosC \\

\rm \:  =  {k}^{2}[sin(B - C)cosA + sin(C - A)cosB + sin(A - B)cosC] \\

\rm \:  =  {k}^{2}[(sinBcosC - sinCcosB)cosA + \\ \rm \: (sinCcosA - sinAcosC)cosB +  \\ \rm \: (sinAcosB - cosAsinB)cosC] \\

\rm \:  =  {k}^{2}[(sinBcosCcosA - sinCcosBcosA + \\ \rm \: sinCcosAcosB - sinAcosCcosB +  \\ \rm \: sinAcosBcosC - cosAsinBcosC] \\

\rm \:  =  \:  {k}^{2} \times 0 \\

\rm \:  =  \:  0 \\

Hence,

\boxed{ \rm{ \:( {b}^{2} -  {c}^{2})cotA + ( {c}^{2} -  {a}^{2})cotB + ( {a}^{2} -  {b}^{2})cotC = 0 }}\\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:sin(\pi - x) = sinx \: }} \\

\boxed{ \rm{ \:A + B + C = \pi \: }} \\

\boxed{ \rm{ \:sin(x + y)sin(x - y ) =  {sin}^{2}x -  {sin}^{2}y \: }} \\

\boxed{ \rm{ \:sin(x - y) = sinxcosy - sinycosx \: }} \\

Similar questions