For any triangle ABC, prove that sin (B-C/2)=b-c/a cos (A/2)
Answers
Answered by
65
By using sine formula
a/sinA=b/sinB=c/sinC=2R
thus,a=2RsinA;b=2RsinB;c=2RsinC
RHS
(b-c/a)cosA/2=(2RsinB-2RsinC/2RsinA)cosA/2
=2sin(B-C/2)cos(B+C/2)/2sinA/2cosA/2 x cos A/2
= sin(B-C/2)cos(pi/2-A/2)/sinA/2
=sin(B-C/2)sin(A/2)/sinA/2
=sin(B-C/2)
RHS
Answered by
21
Answer:
here is your answer mate
Step-by-step explanation:
By using sine formula
a/sinA=b/sinB=c/sinC=2R
thus,a=2RsinA;b=2RsinB;c=2RsinC
RHS
(b-c/a)cosA/2=(2RsinB-2RsinC/2RsinA)cosA/2
=2sin(B-C/2)cos(B+C/2)/2sinA/2cosA/2 x cos A/2
= sin(B-C/2)cos(pi/2-A/2)/sinA/2
=sin(B-C/2)sin(A/2)/sinA/2
=sin(B-C/2)
RHS
Similar questions
Science,
7 months ago
English,
7 months ago
Hindi,
1 year ago
India Languages,
1 year ago
Environmental Sciences,
1 year ago
Biology,
1 year ago