Hindi, asked by suhasbhavar441, 3 months ago

For any two angles A and B prove
that
cos (A-B) = COSA.COS B + sinA.sinB​

Answers

Answered by arvindbhaiasalaliya
1

Answer:

we \: have \\  \cos(a - b) =  \cos(a). \cos(b)  +  \sin(a)  +  \sin(b)  \\ (1) \\ then. \cos(15 )  = ( ?)  \\ let \: a = 45 \: and \: b = 30 \\ put \: the \: a \: and \: b \: education(1) \: and \: we \: get \\  \sin(45)  \cos(30)  \\  \cos(15)  =  \frac{1}{ \sqrt{7}  }  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{2} }    \times   \frac{1}{2}  \\ cos(15) = \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{2} }

 \frac{ \sqrt{3} + 1 }{ \sqrt[2]{2} }

Similar questions