Math, asked by rinkigarg8235, 1 year ago

For any two sets a and b prove that a minus b intersection b minus equals to 5

Answers

Answered by shadowsabers03
6

We have to prove that,

\textsf{For any two sets $A$ and $B$, prove that,}\\ \begin{center}\Large \text{$(A-B)\cap(B-A)=\O$}\end{center}

⇒  (A-B)  contains the elements that are in  A  but not in  B.  

⇒  (B-A)  contains the elements that are in  B  but not in  A.  

Since both  (A-B)  and  (B-A)  contain no common elements, the intersection of both will be an empty set.

A proof by contradiction is given below.

Suppose there exists an element  x \in [(A-B)\cap (B-A)]

This means that the element  x  is included in both  (A-B)  and  (B-A).  

Hence,

\begin{aligned}&x\in (A-B)\ \wedge\ x\in (B-A)\\ \\ \Longrightarrow\ \ &(x\in A\ \wedge\ x\notin B)\ \wedge\ (x\in B\ \wedge\ x\notin A)\\ \\ \Longrightarrow\ \ &x\in A\ \wedge\ x\notin B\ \wedge\ x\in B\ \wedge\ x\notin A\\ \\ \Longrightarrow\ \ &x\in A\ \wedge\ x\notin A\ \wedge\ x\in B\ \wedge\ x\notin B\end{aligned}

Here a contradiction occurs that  x  is included in both  A  and  B  but not included in both  A  and  B !!!

Hence Proved!

An example is given below.

Let  A=\{1,\ 2,\ 3,\ 4\}\ \wedge\ B=\{3,\ 4,\ 5,\ 6\}.

(A-B) = \{1,\ 2,\ 3,\ 4\}-\{3,\ 4,\ 5,\ 6\}=\{1,\ 2\}\\ \\ (B-A)=\{3,\ 4,\ 5,\ 6\}-\{1,\ 2,\ 3,\ 4\}=\{5,\ 6\}\\ \\ \\ \\ (A-B)\cap(B-A)=\{1,\ 2\}\cap \{5,\ 6\}=\O

Answered by Anonymous
6

Answer:

hsjyxhusoehbdhxhddjnssnkwchcgrhudeb

Similar questions