Math, asked by daisy1539, 1 year ago

For any two sets A and B prove the followin:(A-B)intersection (B-A)=EMPTY SET​

Answers

Answered by shadowsabers03
8

We have to prove,

(A-B)\cap(B-A)=\O

Let there exists an element x in the set mentioned in the LHS.

\textsf{Let}\ \ x\in(A-B)\cap(B-A).

We know,  P\cap Q=\{x:x\in P\ \land\ x\in Q\}.

[\land just means 'and'.]

So we get,

x\in(A-B)\ \land\ x\in(B-A)

And we know that  P-Q=\{x:x\in P\ \land\ x\notin Q\}

So,

x\in A\ \land x\notin B\ \land\ x\in B\ \land\ x\notin A\\ \\ \implies\ x\in A\ \land x\notin A\ \land\ x\in B\ \land\ x\notin B

This brings a contradiction, and hence, a confusion too.

What does x\in A\ \land\ x\notin A  mean?!

Similarly, what is  x\in B\ \land\ x\notin B

To avoid this contradiction, the solution continues as,

x\in A\ \land x\notin A\ \land\ x\in B\ \land\ x\notin B\\ \\ \implies\ x\in A\ \land\ x\in A'\ \land\ x\in B\land\ x\in B'\quad\quad[\because\ x\notin P\ \Rightarrow\ x\in P']\\ \\ \implies\ x\in(A\cap A')\ \land\ x\in(B\cap B')\\ \\ \implies\ x\in \O\ \land\ x\in\O\\ \\ \implies\ x\in\O

Therefore,

(A-B)\cap(B-A)=\O

Hence Proved!

Similarly,

\textsf{Let}\ \ x\in(A-B)\cap(B-A)\\ \\ \implies\ x\in(A-B)\ \land\ x\in(B-A)

Since  P-Q=P-(P\cap Q),

\implies\ x\in(A-(A\cap B))\ \land\ x\in(B-(B\cap A))\\ \\ \implies\ x\in A\ \land\ x\notin(A\cap B)\ \land\ x\in B\ \land\ x\notin(B\cap A)\\ \\ \implies\ x\in A\ \land\ x\in B\ \land\ x\notin(A\cap B)\ \ \ [\because\ A\cap B=B\cap A]\\ \\ \implies\ x\in(A\cap B)\ \land\ x\notin(A\cap B)\\ \\ \implies\ x\in(A\cap B)\ \land\ x\in(A\cap B)'\\ \\ \implies\ x\in((A\cap B)\cap(A\cap B)')\\ \\ \implies\ x\in \O


Anonymous: Awesome :)
shadowsabers03: Thank you. :)
Similar questions