Math, asked by saichavan, 20 days ago

For best users and moderators :D
Prove that -
\dfrac{ \cos( \beta )  -  \sin( \beta ) + 1 }{ \cos( \beta )  +  \sin( \beta )  - 1} =  \cosec( \beta )  +  \cot( \beta )

Answers

Answered by diliptalpada66
13

 \\ \color{maroon}=\dfrac{\frac{\cos  \beta }{\sin  \beta }- \cancel\frac{\sin  \beta }{\sin  \beta }+\frac{1}{\sin  \beta }}{\frac{\cos  \beta }{\sin  \beta }+ \cancel\frac{\sin  \beta }{\sin  \beta }-\frac{1}{\sin  \beta }}

 \\  \\  \color{blue}=\frac{\cot  \beta -1+\operatorname{cosec}  \beta }{\cot  \beta +1-\operatorname{cosec}  \beta }

 \\  \\ \red{ =\frac{\cot  \beta +\operatorname{cosec}  \beta -1}{1+\cot  \beta -\operatorname{cosec}  \beta } }

 \color{magenta} \begin{array}{l}\\ \\ \\ \\{=\dfrac{\cot  \beta +\operatorname{cosec}  \beta +\cot ^{2}  \beta -\operatorname{cosec}^{2}  \beta }{1+\cot  \beta -\operatorname{cosec} \beta }}  \\ \\ \\  \\  = \dfrac{(\cot  \beta -\operatorname{cosec}  \beta )(\cot  \beta -\operatorname{cosec}  \beta )(\cot  \beta -\operatorname{cosec}  \beta )}{1+\cos  \beta +\operatorname{cosec}  \beta }  \\ \\ \\  \\ =\dfrac{\cot  \beta +\operatorname{cosec}  \beta \cancel{ (1+\cot  \beta -\operatorname{cosec}  \beta )}} {\cancel{1+\cot  \beta -\operatorname{cosec}  \beta }} \\ \\ \\ \\ =\cot  \beta +\operatorname{cosec}  \beta  \end{array}

Answered by Eline75
107

To Find:

Prove:

\dfrac{ \cos( \beta ) - \sin( \beta ) + 1 }{ \cos( \beta ) + \sin( \beta ) - 1} = \cosec( \beta ) + \cot( \beta )

\begin{gathered} \\ \color{violet}=\dfrac{\frac{\cos \beta }{\sin \beta }- \cancel\frac{\sin \beta }{\sin \beta }+\frac{1}{\sin \beta }}{\frac{\cos \beta }{\sin \beta }+ \cancel\frac{\sin \beta }{\sin \beta }-\frac{1}{\sin \beta }}\end{gathered} =

\begin{gathered} \\ \\  \tt\color{red}=\frac{\cot \beta -1+\operatorname{cosec} \beta }{\cot \beta +1-\operatorname{cosec} \beta } \end{gathered}

\begin{gathered} \\ \\ \red{ =\frac{\cot \beta +\operatorname{cosec} \beta -1}{1+\cot \beta -\operatorname{cosec} \beta } }\end{gathered}

\begin{gathered} \color{cyan} \begin{array}{l}\\ \\ \\ \\{=\dfrac{\cot \beta +\operatorname{cosec} \beta +\cot ^{2} \beta -\operatorname{cosec}^{2} \beta }{1+\cot \beta -\operatorname{cosec} \beta }} \\ \\ \\ \\ = \dfrac{(\cot \beta -\operatorname{cosec} \beta )(\cot \beta -\operatorname{cosec} \beta )(\cot \beta -\operatorname{cosec} \beta )}{1+\cos \beta +\operatorname{cosec} \beta } \\ \\ \\ \\ =\dfrac{\cot \beta +\operatorname{cosec} \beta \cancel{ (1+\cot \beta -\operatorname{cosec} \beta )}} {\cancel{1+\cot \beta -\operatorname{cosec} \beta }} \\ \\ \\ \\ =\cot \beta +\operatorname{cosec} \beta \end{array}\end{gathered}

Similar questions