for constructing a square, which of the following statements is not true:
a) A side is given
b) A diagonal is given
c) one angle is 90°
d) none of these
Answers
Answered by
2
Step-by-step explanation:
Answer
To construct a unique quadrilateral, we will be need a minimum of 5 dimensions.
Here in option A, only four dimensions are provided, so unique quadrilateral not possible because we don't know its angles.
In option B, we have five dimensions, but it does not results in a unique quadrilateral. we needed one more side length to construct uniquely.
In option C, It is not possible to construct a unique quadrilateral from only two diagonals given, unless it is an rhombus or square.
In option D, we have five dimensions. Here if we draw a side first then mark angle on both ends then we can construct a quadrilateral uniquely.
Hence option D.
mark me as
Answered by
0
Answer:
D
Step-by-step explanation:
All the statements are true
Similar questions