Physics, asked by Harshitha7150, 1 month ago

) For DE, (y cos x)dx + (x cos y) dy =0, test for exactness requires that

Answers

Answered by MaheswariS
3

\textbf{Given:}

\textsf{Differential equation is}

\mathsf{(y\;cosx)\;dx+(x\;cosy)\;dy=0}

\textbf{To check:}

\textsf{whether the given differential equation is exact or not}

\textbf{Solution:}

\textsf{Concept used:}

\mathsf{A\;differential\;equation\;P\;dx+Q\;dy=0\;is\;exact\;if\;and\;only\;if}

\mathsf{\dfrac{\partial\,Q}{\partial\,x}=\dfrac{\partial\,P}{\partial\,y}}

\mathsf{Consider,}

\mathsf{(y\;cosx)\;dx+(x\;cosy)\;dy=0}

\mathsf{Here,\;P=y\;cosx\;\;and\;\;Q=x\;cosy}

\mathsf{\dfrac{\partial\,Q}{\partial\,x}}

\mathsf{=\dfrac{\partial(x\;cosy)}{\partial\,x}}

\mathsf{=cosy}

\mathsf{\dfrac{\partial\,P}{\partial\,y}}

\mathsf{=\dfrac{\partial(y\;cosx)}{\partial\,y}}

\mathsf{=cosx}

\mathsf{\dfrac{\partial\,Q}{\partial\,x}\;{\neq}\;\dfrac{\partial\,P}{\partial\,y}}

\therefore\textbf{The given D.E is not an exact differential equation}

Similar questions