Math, asked by sandeepkola004, 10 months ago

for each geometric progression find the common ratio 'r', and then find An. 1) 3,3÷2, 3÷4, 3÷8,...........​

Answers

Answered by gnagamokshi
6

Answer:

r=1/2;an=3*1/2^(n-1)

Step-by-step explanation:

a=3,a2=3/2,a3=3/4

a2/a1=3/2/3=3/2*1/3=1/2

r=1/2

an=a*r^(n-1)

   =3*1/2^(n-1)

   =3*1/2^(n-1)

mark me as brainliest...........

Answered by ElegantDoll
2

\Huge\bigstar\:\tt\underline\red{:ANSWER:}\\\\

The Given G.P

{3,\frac{3}{2},\frac{3}{4},\frac{3}{8}.....}.

a = {3}.

a1=\frac{3}{2}.

a2=\frac{3}{4}.

a3=\frac{3}{8}.

The first term {\huge{\boxed{\mathbb{\red{a=3}}}}}

The common ratio {r} =\frac{a2}{a1}.

{\implies}\frac{3/2}{3/1}

{\implies}\frac{3}{2}×\frac{1}{3}.

\therefore{\huge{\boxed{\mathbb{\purple{r=\frac{1}{2}}}}}}.

nth term of the Gp.

{\large{\boxed{\mathbb{\orange{an= a-r^n-1}}}}}.

{3(\frac{1}{2})^n-1}.

Similar questions