Math, asked by PragyaTbia, 1 year ago

For each of the differential equation, find the general solution: (e^{x} + e^{-x}) dy - (e^{x} - e^{-x}) dx = 0

Answers

Answered by MaheswariS
0

Answer:

The solution is

\bf\:\:y=log|e^x+e^{-x}|+C

Step-by-step explanation:

\text{I have applied variable separable method to solve this problem}

(e^x+e^{-x})dy-(e^x-e^{-x})dx=0

(e^x+e^{-x})dy=(e^x-e^{-x})dx

dy=\frac{(e^x-e^{-x})dx}{e^x+e^{-x}}

Integrating

\int{dy}=\int{\frac{(e^x-e^{-x})dx}{e^x+e^{-x}}}

In R.H.S integral numerator is the actual derivative of denominator

Applying, the formula

\boxed{\bf\int{\frac{f'(x)}{f(x)}}dx=log|f(x)|+C}

\implies\:\bf\:\:y=log|e^x+e^{-x}|+C

Answered by pulakmath007
9

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

\displaystyle  \sf{\int\limits_{}^{}  \,  \frac{dx}{x}   =  \ln |x|  + c}

Where c is integration constant

TO DETERMINE

The general Solution of the differential equation

 \sf{(  {e}^{x} +  {e}^{ - x} )dy -(  {e}^{x}  -   {e}^{ - x} )dx = 0  \:  \: }

CALCULATION

 \sf{(  {e}^{x} +  {e}^{ - x} )dy -(  {e}^{x}  -   {e}^{ - x} )dx = 0  \:  \: }

  \displaystyle \: \implies \:  \sf{dy - \:  \frac{(  {e}^{x}  -  {e}^{ - x} )}{(  {e}^{x} +  {e}^{ - x} )}  \: dx = 0  \:  \: }

On integration

  \displaystyle \: \implies \:  \sf{ \int dy - \int \frac{(  {e}^{x}  -  {e}^{ - x} )}{(  {e}^{x} +  {e}^{ - x} )}  \: dx = 0  \:  \: } \:  \: ......(1)

Let z =

 \sf{ z =  \displaystyle \:   {e}^{x} +  {e}^{ - x}  \: }

Differentiating both sides with respect to x we get

 \sf{   \displaystyle \:    \frac{dz}{dx}  = {e}^{x}  -   {e}^{ - x}  \: }

 \implies  \sf{   \displaystyle  {dz}  = ({e}^{x}  -   {e}^{ - x}  ){dx}\: }

So From Equation (1)

  \displaystyle \:\:  \sf{ \int dy - \int \frac{dz}{z}  \:= 0  \:  \: } \:  \:

 \implies \sf{ y  -  \ln z  =  c\:  \: }

 \implies \sf{ y   =   \ln z   +   c\:  \: }

Putting the values of z we get

 \sf{ y =  \displaystyle \ln( {e}^{x} +  {e}^{ - x} ) + c \: }

Where C is integration constant

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

if 2x+y+k=0 is a normal to the parabola x^2=16y

Find the value of k

https://brainly.in/question/13446883

Similar questions