Math, asked by ashray18, 8 months ago

For each of the following numbers, find the smallest whole number by which it should be multiplied so as to get a perfect square number. Also find the square root of the square number so obtained.
A) 14641. B) 7688 C) 2475. D) 176

Answers

Answered by MaheswariS
1

\bf\textsf{Given:}

\mathsf{14641,7688,2475,176}

\bf\textsf{To find:}

\textsf{The smallest whole number by which it should be}

\textsf{multiplied so as to get a perfect square}

\bf\textsf{Solution:}

\begin{array}{r|l}11&14641\\\cline{2-2}11&1331\\\cline{2-2}11&121\\\cline{2-2}11&11\\\cline{2-2}&1\\\cline{2-2}\end{array}

14641=11{\times}11{\times}11{\times}11

14641=11^2{\times}11^2{

\implies\bf\sqrt{14641}=11^2=121

\begin{array}{r|l}2&7688\\\cline{2-2}2&3844\\\cline{2-2}2&1922\\\cline{2-2}31&961\\\cline{2-2}31&31\\\cline{2-2}&1\\\cline{2-2}\end{array}

7688=2^2{\times}2{\times}31^2

\textsf{2 does not have pair}

\textsf{2 should be multiplied to7688}

15376=2^2{\times}2^2{\times}31^2

\implies\bf\sqrt{15376}=2{times}2{\times}31=124

\begin{array}{r|l}3&2475\\\cline{2-2}3&825\\\cline{2-2}5&275\\\cline{2-2}5&55\\\cline{2-2}11&11\\\cline{2-2}&1\\\cline{2-2}\end{array}

2475=3^2{\times}5^2{\times}11

\textsf{11 does not have pair}

\textsf{11 should be multiplied to 2475}

27225=3^2{\times}5^2{\times}11^2

\implies\bf\sqrt{27225}=3{\times}5{\times}11=165

\begin{array}{r|l}2&176\\\cline{2-2}2&88\\\cline{2-2}2&44\\\cline{2-2}2&22\\\cline{2-2}11&11\\\cline{2-2}&1\\\cline{2-2}\end{array}

176=2^2{\times}2^2{\times}11

\textsf{11 does not have pair}

\textsf{11 should be multiplied to 2475}

1936=2^2{\times}2^2{\times}11^2

\implies\bf\sqrt{1936}=2{\times}2{\times}11=44

Similar questions