Math, asked by snehachinchulkar88, 4 months ago

*For equations y+2x=19 and 2x-3y=-3 find D.*

1️⃣ -8
2️⃣ -6
3️⃣ -4
4️⃣ 8​

Answers

Answered by varadad25
44

Answer:

The value of D for the given simultaneous equations is - 8.

Option ( 1 )

Step-by-step-explanation:

The given simultaneous equations are

\displaystyle{\sf\:y\:+\:2x\:=\:19\:\&\:2x\:-\:3y\:=\:-\:3}

We have to find the value of determinant D.

Now,

\displaystyle{\sf\:y\:+\:2x\:=\:19}

\displaystyle{\implies\sf\:2x\:+\:y\:=\:19\:\:\:-\:-\:(\:1\:)}

\displaystyle{\bullet\:\sf\:a_1\:=\:2}

\displaystyle{\bullet\:\sf\:b_1\:=\:1}

\displaystyle{\bullet\:\sf\:c_1\:=\:19}

Now,

\displaystyle{\sf\:2x\:-\:3y\:=\:-\:3\:\:\:-\:-\:(\:2\:)}

\displaystyle{\bullet\:\sf\:a_2\:=\:2}

\displaystyle{\bullet\:\sf\:b_2\:=\:-\:3}

\displaystyle{\bullet\:\sf\:c_2\:=\:-\:3}

Now, we know that,

\displaystyle{\pink{\sf\:D\:=\:\left|\begin{array}{cc}\sf\:a_1 & \sf\:b_1\\\sf\:a_2 & \sf\:b_2\:\end{array}\:\right|}}

\displaystyle{\implies\sf\:D\:=\:\left|\begin{array}{cc}\sf\:2 & \sf\:1\\\sf\:2 & \sf\:-\:3\:\end{array}\:\right|}

\displaystyle{\implies\sf\:D\:=\:2\:\times\:(\:-\:3\:)\:-\:1\:\times\:2}

\displaystyle{\implies\sf\:D\:=\:-\:6\:-\:2}

\displaystyle{\implies\underline{\boxed{\red{\sf\:D\:=\:-\:8}}}}

∴ The value of D for the given simultaneous equations is - 8.

Answered by vir9671487850
9

Answer:

Answer: Answer is D*= -8

Answer: Answer is D*= -8 this is right answer

Attachments:
Similar questions