Math, asked by PragyaTbia, 1 year ago

For given vectors,\vec{a}=2\hat i \hat j+2\hat k and \vec{b}=-\hat i + \hat j-\hat k , find the unit vector in thedirection of the vector \vec{a}+\vec{b}.

Answers

Answered by hukam0685
2
Solution:

To find the unit vector in direction of

\vec{a}+\vec{b}

Given :

\vec{a}=2\hat i +\hat j+2\hat k

\vec{b}=-\hat i + \hat j-\hat k

\vec{a} +\vec{b} =2\hat i + \hat j+2\hat k-\hat i + \hat j-\hat k \\ \\ \vec{a} +\vec{b} = \hat i + 2\hat j+\hat k \\ \\
unit vector in the direction of \vec{a}+\vec{b}

 = \frac{1}{ \sqrt{6} } \hat i + \frac{2}{ \sqrt{6} } \hat j + \frac{1}{ \sqrt{6} } \hat k\\\\
Hope it helps you.
Similar questions