Math, asked by trinisanju, 1 month ago


For how many integral values of x inequality,
3x^2 - 7x+8/x^2+1
≤2 holds true?

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{3 {x}^{2} - 7x + 8 }{ {x}^{2} + 1 }  \leqslant 2 \\

  \implies\frac{3 {x}^{2} - 7x + 8 }{ {x}^{2} + 1 }  - 2 \leqslant 0 \\

  \implies\frac{3 {x}^{2} - 7x + 8 - 2( {x }^{2} + 1)  }{ {x}^{2} + 1   }   \leqslant 0 \\

  \implies\frac{3 {x}^{2} - 7x + 8 - 2 {x }^{2}  - 2  }{ {x}^{2} + 1   }   \leqslant 0 \\

  \implies\frac{ {x}^{2} - 7x +  6   }{ {x}^{2} + 1   }   \leqslant 0 \\

  \implies\frac{ {x}^{2} - 6x  - x+  6   }{ {x}^{2} + 1   }   \leqslant 0 \\

  \implies\frac{ x(x - 6)  -1 (x -   6 )  }{ {x}^{2} + 1   }   \leqslant 0 \\

  \implies\frac{( x - 1)(x - 6)  }{ {x}^{2} + 1   }   \leqslant 0 \\

 \implies \: x \in \:  [1 , 6]

So, integral solutions are

 \tt \purple{x \in \{1 ,2 ,3 ,4,5 ,6 \}}

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\:\dfrac{ 3{x}^{2} - 7x + 8 }{ {x}^{2}  + 1}  \leqslant 2

\rm :\longmapsto\:\dfrac{ 3{x}^{2} - 7x + 8 }{ {x}^{2}  + 1} - 2  \leqslant 0

\rm :\longmapsto\:\dfrac{ 3{x}^{2} - 7x + 8 - 2( {x}^{2}   + 1)}{ {x}^{2}  + 1}  \leqslant 0

\rm :\longmapsto\:\dfrac{ 3{x}^{2} - 7x + 8 - 2{x}^{2} - 2}{ {x}^{2}  + 1}  \leqslant 0

\rm :\longmapsto\:\dfrac{ {x}^{2} - 7x + 6}{ {x}^{2}  + 1}  \leqslant 0

As,

\rm :\longmapsto\: {x}^{2} + 1 > 0 \:  \forall \: x \:  \in \: Z

So,

\rm :\longmapsto\: {x}^{2} - 7x + 6 \leqslant 0

\rm :\longmapsto\: {x}^{2} - 6x  - x+ 6  \leqslant  0

\rm :\longmapsto\:x(x - 6) - 1(x - 6) \leqslant 0

\rm :\longmapsto\:(x - 6)(x - 1) \leqslant 0

\bf\implies \:1 \leqslant x \leqslant 6

As, it is given that x can assume only integral values,

So,

\bf\implies \:x =  \{1,2,3,4,5,6 \}

\bf\implies \:x \: can \: assume \: 6 \: integral \: values

Additional Information :-

If a < b, then

\red{ \boxed{ \sf{ \:(x - a)(x - b) &lt; 0 \:  \implies \: a &lt; x &lt; b}}}

\red{ \boxed{ \sf{ \:(x - a)(x - b)  \leqslant  0 \:  \implies \: a  \leqslant  x  \leqslant  b}}}

\red{ \boxed{ \sf{ \:(x - a)(x - b)   &gt;   0 \:  \implies \: x &lt; a \:  \: or \:  \:  x  &gt;  b}}}

\red{ \boxed{ \sf{ \:(x - a)(x - b) \geqslant 0 \:  \implies \: x  \leqslant  a \:  \: or \:  \:  x  \geqslant   b}}}

Similar questions