Math, asked by chakia067, 5 months ago

for integers x and y, the inequality is satisfied, find the largest value of the x+y.
3 \sqrt{4x - 5y + 7}  + 5 \div 3x - 4y + 61 \leqslant 4

Answers

Answered by anjukrishusachin
1

 \frac{3 \sqrt{4x - 5y + 7}  + 5}{3x - 4y + 61}  \leqslant 4 \\ {3 \sqrt{4x - 5y + 7}  + 5} \leqslant 4 \times (3x - 4y + 61) \\ {3 \sqrt{4x - 5y + 7}  + 5} \leqslant 12x - 16y + 244 \\3 \sqrt{4x - 5y + 7} \leqslant12x - 16y + 244 - 5 \\ 3 \sqrt{4x - 5y + 7}   \leqslant 12x - 16y + 239 \\  on \: squaring \: both \: sides \\  {(3 \sqrt{4x - 5y + 7}) }^{2} \leqslant  {(12x - 16y + 239)}^{2}  \\ 9 \times (4x - 5y + 7) \leqslant 144 {x}^{2}  + 256 {y}^{2}  + 57121 - 384xy - 7648y + 5736x \\ 36x - 45y + 63 + 7648y - 5736x - 57121 \leqslant 144 {x}^{2}  + 256 {y}^{2}  - 384xy \\ 7603y - 5700x - 57058 \leqslant  {(12x - 16y)}^{2}  \\  \\  \\ i \: think \: there \: is \: a \: mistake \: in \: the \: question.

hope it helps you, you may solve this problem likewise.

pls mark as brainliest

Similar questions