Math, asked by Anonymous, 1 year ago

For maths answerers!!

Prove that :-

if \: x =  \frac{5 -  \sqrt{21} }{2}

then,

 ({x}^{3}   +  \frac{1}{ {x}^{3} } ) - 5( {x}^{2}  +  \frac{1}{ {x}^{2} } ) \\  + (x +  \frac{1}{x} ) = 0

❌No Spam ❌

Answers

Answered by Swarup1998
58

Proof :

Given, \mathrm{x=\frac{5-\sqrt{21}}{2}}

Now, \mathrm{\frac{1}{x}=\frac{2}{5-\sqrt{21}}}

\mathrm{=\frac{2(5+\sqrt{21})}{(5-\sqrt{21})(5+\sqrt{21})}}

\mathrm{=\frac{2(5+\sqrt{21})}{25-21}}

\mathrm{=\frac{2(5+\sqrt{21})}{4}}

\mathrm{=\frac{5+\sqrt{21}}{2}}

Then, \mathrm{x+\frac{1}{x}}

\mathrm{=\frac{5-\sqrt{21}}{2}+\frac{5+\sqrt{21}}{2}}

\mathrm{=\frac{5-\sqrt{21}+5+\sqrt{21}}{2}}

\mathrm{=\frac{10}{2}=5}

\mathrm{x^{3}+\frac{1}{x^{3}}}

\mathrm{=(x+\frac{1}{x})^{3}-3.x.\frac{1}{x}(x+\frac{1}{x})}

\mathrm{=5^{3}-3.5}

\mathrm{=125-15=110}

\mathrm{x^{2}+\frac{1}{x^{2}}}

\mathrm{=(x+\frac{1}{x})^{2}-2.x.\frac{1}{x}}

\mathrm{=5^{2}-2=25-2=23}

Thus, \small{\mathrm{(x^{3}+\frac{1}{x^{3}})-5(x^{2}+\frac{1}{x^{2}})+(x+\frac{1}{x})}}

\mathrm{=110-5(23)+5}

\mathrm{=110-115+5=0}

\boxed{\small{\mathrm{(x^{3}+\frac{1}{x^{3}})-5(x^{2}+\frac{1}{x^{2}})+(x+\frac{1}{x})=0}}}

Hence, proved.


AdorableAstronaut: Awesome sir !
Swarup1998: Where is wrong?
Swarup1998: what is wrong... tell that only
Swarup1998: :)
Anonymous: Awesome ♥♥
Anonymous: Thanks sir :)):))
Anonymous: Osm ❤
Answered by BrainlyVirat
55

Answer :

Given :

 \tt{x =  \frac{5 -  \sqrt{21} }{2}}

We can say that :

 \tt{ \frac{1}{x}  =  \frac{2}{5 -  \sqrt{21}} }

Rationalizing the denominator,

 \tt{ \frac{1}{x}  =  \frac{2}{5 -  \sqrt{21}  } \times  \frac{5 +  \sqrt{21} }{5 +  \sqrt{21}} }

 \tt{ \frac{1}{x }  =  \frac{2 \times (5  +  \sqrt{21}) }{(5 -  \sqrt{21})(5 +  \sqrt{21)}  }}

  \tt{\frac{1}{x}  =  \frac{2 \times (5  + \sqrt{21}) }{25 - 21}}

  \tt{\frac{1}{x}  =   \frac{2(5  +  \sqrt{21} )}{4}}

 \tt{ \frac{1}{x}  =  \frac{5 +  \sqrt{21}} {2}}

Now,

 \tt {x +  \frac{1}{x}  =  \frac{5 -  \sqrt{21} }{2}  +  \frac{5 +  \sqrt{21} }{2}}

  \tt{\therefore x +  \frac{1}{x}  = 5}

Squaring both sides ,

 \tt{ ({x} +  \frac{1}{x})  {}^{2}  = 25}

 \tt{x {}^{2} +  \frac{1}{x {}^{2} }  + 2 = 25}

 \tt{x {}^{2}  +  \frac{1}{x {}^{2} }  = 23}

Now,

We know that,

  \tt\small{x {}^{3}  +  \frac{1}{x {}^{3} }  =  ( x  + \frac{1}{x} )(x {}^{2}  +  \frac{1}{x {}^{2} } - 1)}

 = 5 \times (23 - 1)

 \tt{ = 110}

Now,

Following next steps ,

 \tt \small{x {}^{3}  +  \frac{1}{x {}^{3}  }  - 5 \times (x {}^{2} +  \frac{1}{ {x}^{2} }) + (x +  \frac{1}{x}) }

= 110 - (5 × 23) + 5

= 110 - 115 + 5

= 110 - 110

= 0

\tt{= R. H. S }

Hence, Proved.


BrainlyVirat: :)
AdorableAstronaut: Awesome re ❤ !
Anonymous: Great❤️
Anonymous: Osm ❤✌
BrainlyVirat: @dhruv15819 What's wrong in the answer?
Anonymous: @dhruv15819 its not a wrong answer cuz its verified by the moderators ..
Anonymous: Thanks a lot dear:)):))
Similar questions