Math, asked by syu39, 3 days ago

For Moderator , brainly star and best users

1) The percentage of marks obtained by a student in monthly unit test are given (see the attachment) :

1)A first class i.e. at least 60% marks
2)Marks between 70% to 80%
3)A distinction i.e. 75% or above
4)less than 65% marks

Please provide well-explained answers :)​

Attachments:

Answers

Answered by ItzAshi
230

Step-by-step explanation:

{\large{\bf{\underline{\red{Given :}}}}} \\

  • Total no. of tests = 5
  • Marks obtained = 58, 74, 76, 62, 85

{\large{\bf{\underline{\red{To  \: find :}}}}} \\

The probability that the student gets :

  • A first class i.e. at least 60% marks
  • Marks between 70% to 80%
  • A distinction i.e. 75% or above
  • Less than 65% marks

We know that,

{\bold{: ⟹ \:  \:  \:  \:  \:}} {\bold{\underline{\boxed{\rm{Probability \:  of \:  an \:  event  \: = \:  \frac{Number \:  of  \: Favorable  \: outcomes}{Total  \: Numbers \:  of \:  outcomes}}}}}}

{\large{\bf{\underline{\red{Solution :}}}}} \\

1. Probability of scoring at least 60%

{\bold{\sf{⟼ \:  \:  \:  \:  \: No. \:  of  \: students  \: who \:  scored  \: first \:  class \:  =  \: 4}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: No. \:  of  \: test =  \: 5}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: Probability  \: of \:  scoring \:  first  \: class :}}}

⟼ \:  \:  \:  \:  \:{\bold{\underline{\boxed{\mathfrak{\pink{\  \: \frac{4}{5} \: }}}}}}

2. Probability of getting between 70% to 80%

{\bold{\sf{⟼ \:  \:  \:  \:  \: No. \:  of  \: students  \: who \:  scored  \: between \: 70\% \: to \: 80\% \:  =  \: 2}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: No. \:  of  \: tests \:  =  \: 5}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: Probability  \: of \:  scoring \:  70\%  \: to \:  80\% \::}}} \\  \\

{\bold{⟼ \:  \:  \:  \:  \: }}{\bold{\underline{\boxed{\mathfrak{\pink{ \: \frac{2}{5} \: }}}}}} \\  \\

3. Probability of getting distinction

{\bold{\sf{⟼ \:  \:  \:  \:  \: No. \:  of \:  students \:  who  \: scored  \: above  \: 70\%  \: =  \: 2}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: Total  \: no.  \: of  \: tests  \: = \:  5}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: Probability  \: of \:  getting  \: distinction  \: :}}} \\  \\

{\bold{⟼ \:  \:  \:  \:  \: }}{\bold{\underline{\boxed{\mathfrak{\pink{ \: \frac{2}{5} \: }}}}}}\\  \\

4. Probability of getting less than 65%

{\bold{\sf{⟼ \:  \:  \:  \:  \: No.  \: of  \: students \:  who \:  score \:  less \:  than \:  65\%  \: = \:  1}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: Total \:  no.  \:  of  \: tests  \: =  \: 5}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: Probability  \: of  \: getting \:  less  \: than \:  65\%  \: :}}} \\  \\

{\bold{⟼ \:  \:  \:  \:  \: }}{\bold{\underline{\boxed{\mathfrak{\pink{ \: \frac{1}{5} \: }}}}}}\\

Answered by Anonymous
24

\huge{ \boxed{ \bold \red{A}}}{ \boxed{ \bold \green{N}}}{ \boxed{ \bold \blue{S}}}{ \boxed{{{ \bold{W}}}}}{ \boxed {\bold \pink{E}}}{ \boxed {\bold \purple{R}}}

Attachments:
Similar questions