Math, asked by khushi15686, 1 month ago

For moderators, Stars, good user or Aryabhatta.

Find the domain of the function

f(x) =  \sqrt[6]{ {4}^{x} +  {8}^{ \frac{2x}{3} } -  {2}^{2(x - 1)}   - 52}

is ____

Please don't try to spam.

Only answer if you know it.

Don't show your greedyness for points.

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \sqrt[6]{ {4}^{x} + {\bigg[8\bigg]}^{ \dfrac{2x}{3} } - {2}^{2(x - 1)} - 52}

Domain is defined as set of those values of x for which function is well defined.

So, f(x) is defined when

\rm :\longmapsto\: {4}^{x} + {\bigg[8\bigg]}^{ \dfrac{2x}{3} } - {2}^{2(x - 1)} - 52 \geqslant 0

can be rewritten as

\rm :\longmapsto\: {2}^{2x} + {\bigg[ {2}^{3} \bigg]}^{ \dfrac{2x}{3} } - {2}^{2(x - 1)}  \geqslant 52

\rm :\longmapsto\: {2}^{2x} +  {2}^{2x}  -  {2}^{2(x - 1)}  \geqslant 52

\rm :\longmapsto\: {2}^{2x} +  {2}^{2x}  -  {2}^{2x - 2}  \geqslant 52

\rm :\longmapsto\: {2}^{2x} +  {2}^{2x}  -  {2}^{2x} \times  {2}^{ - 2}  \geqslant 52

\rm :\longmapsto\: {2}^{2x} +  {2}^{2x}  -  \dfrac{ {2}^{2x} }{4}  \geqslant 52

\rm :\longmapsto\:  \dfrac{4. {2}^{2x} + 4. {2}^{2x}  -  {2}^{2x} }{4}  \geqslant 52

\rm :\longmapsto\:  \dfrac{7. {2}^{x}  }{4}  \geqslant 52

\rm :\implies\: {2}^{2x} \geqslant \dfrac{208}{7}

\rm :\implies\: {4}^{x} \geqslant \dfrac{208}{7}

We know, that

\boxed{ \tt{ \:  {x}^{ log_{x}(y) } = y \:  \: }}

So, using this, we get

\rm :\implies\: {4}^{x} \geqslant  {4}^{ log_{4}\bigg[\dfrac{208}{7} \bigg]}

\bf\implies \:x \geqslant  log_{4}\bigg[\dfrac{208}{7} \bigg]

Answered by swanhayden7
0

Answer:

⟹x⩾log4[7208]

Similar questions