for my lovely haters
muh mein inke chillam saafi hai bhai,
dushmani kam karo,
chill maro,
meri ek khaasi tumhaare liye kaafi hai bhai,
ede challe karega toh faasi hai bhai,
tu mujhe dekh na mein classi hai bhai,
teri agli dekhi meine khass nahi hai bhai,
jo mere pass wo tere pass nahi hai bhai,
how is it
Answers
Explanation:
Let p(x) = 3x² - 2x - 3=0
On comparing the given equation with quadratic equation ax² + bx + c = 0,
we have a = 3, b = -2 and c = -3.
By using quadratic formula,
x = - b ± √b² - 4ac / 2a
=-(-2) ± √(-2)²-4 (3) (3)/2 (3)
= 2 ± √4-36/6 (*-*-=+)
= 2 ± √-32/6 is the answer.a = √3+1
.. a4 +16/ a^, we can write as
= ( a² + 4/a²)² - 2 (a²) (4/a²)
= ( a² + 4/a²) - 8
a² = ( √3+ 1)² = ( √3 )² + 1² + 2 (√3 ) ( 1 ) = 3+1+ 2√3=4+2√3.
4/a²=4/(4+2√3)
= [4 / (4+2√3)] ×[(4-2√3)/(4-2√3)] (*. Rationalise the denominator)
= [4 (4-2√3)] / [( 4+2√3)( 4-2√3)] = [4 (4-2√3)] / [(4)²-(2√3)²] [*•* a² -
b² = (a - b)(a + b)]
= [4 (4-2√3)]/(16 - 12)
= [4 (4-2√3)]/(4)
=4-2√3
(a²-4/a²)² - 8
= [4+2√3-(4-2-√3) 1² - 8
= [4+2√3-4+2√3]²-8__(¨¨*-* + :
+)
= [2√3+2√31²-8
= [4√3 ]² - 8
= 48 - 8
= 40 is the answer.a = √3+1
.. a4 +16/ a^, we can write as
= ( a² + 4/a²)² - 2 (a²) (4/a²)
= ( a² + 4/a²) - 8
a² = ( √3+ 1)² = ( √3 )² + 1² + 2 (√3 ) ( 1 ) = 3+1+ 2√3=4+2√3.
4/a²=4/(4+2√3)
= [4 / (4+2√3)] ×[(4-2√3)/(4-2√3)] (*. Rationalise the denominator)
= [4 (4-2√3)] / [( 4+2√3)( 4-2√3)] = [4 (4-2√3)] / [(4)²-(2√3)²] [*•* a² -
b² = (a - b)(a + b)]
= [4 (4-2√3)]/(16 - 12)
= [4 (4-2√3)]/(4)
=4-2√3
(a²-4/a²)² - 8
= [4+2√3-(4-2-√3) 1² - 8
= [4+2√3-4+2√3]²-8__(¨¨*-* + :
+)
= [2√3+2√31²-8
= [4√3 ]² - 8
= 48 - 8
= 40 is the answer.Let p(x) = 3x² - 2x - 3=0
On comparing the given equation with quadratic equation ax² + bx + c = 0,
we have a = 3, b = -2 and c = -3.
By using quadratic formula,
x = - b ± √b² - 4ac / 2a
=-(-2) ± √(-2)²-4 (3) (3)/2 (3)
= 2 ± √4-36/6 (*-*-=+)
= 2 ± √-32/6 is the answer.a = √3+1
.. a4 +16/ a^, we can write as
= ( a² + 4/a²)² - 2 (a²) (4/a²)
= ( a² + 4/a²) - 8
a² = ( √3+ 1)² = ( √3 )² + 1² + 2 (√3 ) ( 1 ) = 3+1+ 2√3=4+2√3.
4/a²=4/(4+2√3)
= [4 / (4+2√3)] ×[(4-2√3)/(4-2√3)] (*. Rationalise the denominator)
= [4 (4-2√3)] / [( 4+2√3)( 4-2√3)] = [4 (4-2√3)] / [(4)²-(2√3)²] [*•* a² -
b² = (a - b)(a + b)]
= [4 (4-2√3)]/(16 - 12)
= [4 (4-2√3)]/(4)
=4-2√3
(a²-4/a²)² - 8
= [4+2√3-(4-2-√3) 1² - 8
= [4+2√3-4+2√3]²-8__(¨¨*-* + :
+)
= [2√3+2√31²-8
= [4√3 ]² - 8
= 48 - 8
= 40 is the answer.a = √3+1
.. a4 +16/ a^, we can write as
= ( a² + 4/a²)² - 2 (a²) (4/a²)
= ( a² + 4/a²) - 8
a² = ( √3+ 1)² = ( √3 )² + 1² + 2 (√3 ) ( 1 ) = 3+1+ 2√3=4+2√3.
4/a²=4/(4+2√3)
= [4 / (4+2√3)] ×[(4-2√3)/(4-2√3)] (*. Rationalise the denominator)
= [4 (4-2√3)] / [( 4+2√3)( 4-2√3)] = [4 (4-2√3)] / [(4)²-(2√3)²] [*•* a² -
b² = (a - b)(a + b)]
= [4 (4-2√3)]/(16 - 12)
= [4 (4-2√3)]/(4)
=4-2√3
(a²-4/a²)² - 8
= [4+2√3-(4-2-√3) 1² - 8
= [4+2√3-4+2√3]²-8__(¨¨*-* + :
+)
= [2√3+2√31²-8
= [4√3 ]² - 8
= 48 - 8
= 40 is the answer.Let p(x) = 3x² - 2x - 3=0
On comparing the given equation with quadratic equation ax² + bx + c = 0,
we have a = 3, b = -2 and c = -3.
By using quadratic formula,
x = - b ± √b² - 4ac / 2a
=-(-2) ± √(-2)²-4 (3) (3)/2 (3)
= 2 ± √4-36/6 (*-*-=+)
= 2 ± √-32/6 is the answer.a = √3+1
.. a4 +16/ a^, we can write as
= ( a² + 4/a²)² - 2 (a²) (4/a²)
= ( a² + 4/a²) - 8
a² = ( √3+ 1)² = ( √3 )² + 1² + 2 (√3 ) ( 1 ) = 3+1+ 2√3=4+2√3.
4/a²=4/(4+2√3)
= [4 / (4+2√3)] ×[(4-2√3)/(4-2√3)] (*. Rationalise the denominator)
= [4 (4-2√3)] / [( 4+2√3)( 4-2√3)] = [4 (4-2√3)] / [(4)²-(2√3)²] [*•* a² -
b² = (a - b)(a + b)]
= [4 (4-2√3)]/(16 - 12)
= [4 (4-2√3)]/(4)
=4-2√3
(a²-4/a²)² - 8
= [4+2√3-(4-2-√3) 1² - 8
= [4+2√3-4+2√3]²-8__(¨¨*-* + :
+)
= [2√3+2√31²-8
= [4√3 ]² - 8
= 48 - 8
= 40 is the answer.Let p(x) = 3x² - 2x - 3=0
On comparing the given equation with quadratic equation ax² + bx + c = 0,
we have a = 3, b = -2 and c = -3.
By using quadratic formula,
x = - b ± √b² - 4ac / 2a
=-(-2) ± √(-2)²-4 (3) (3)/2 (3)
= 2 ± √4-36/6 (*-*-=+)
= 2 ± √-32/6 is the answer.