Math, asked by Anonymous, 3 months ago

for non-negative integers s,r let
\sf \binom{s}{r} = \begin{cases} \sf \dfrac{s!}{r!(s-r)!} \:\;if\:\;\:r\leqslant s \\\\\sf 0 \:\;\:\:\;\:\:\:\;\:\:\;\:\:\:\;\:\:\;\:\: r>s \end{cases}

for positive integers m and n, let
\displaystyle\sf (m,n) \: \sum\limits_{p=0}^{m+n} \dfrac{f(m,n,p)}{\binom{n+p}{p}}

where for any non negative integer p,

\displaystyle\sf f(m,n,p) = \sum\limits_{i=0}^{p} \binom{m}{i} \binom{n+i}{p} \binom{p+n}{p-i}

then which of the following statements is true?

(A) (m,n) = g(m,n) for all positive integers m,n

(B) (m,n+1) = g(m+i,n) for all positive integers m,n

(C) (2m,2n) = 2g(m,n) for all positive integers m,n

(D) (2m,2n) = (g(m,n))² for all positive integers m,n


→ appropriate answers needed.​

Answers

Answered by Anonymous
128

\displaystyle\sf f(m,n,p) = \sum\limits_{i=0}^{p} {}^m C_i {}^{n+1} C_p \cdot {}^{p+n} C_{p-i}

\sf {}^m C_i \cdot {}^{n+1} C_p \cdot {}^{p+n} C_{p-1}

\sf = {}^m C_i \cdot \dfrac{(n+i)!}{p!(n-p+i)!} \times \dfrac{(n+p)!}{(p-i)!(n+i)!}

\sf = {}^m C_i \times \dfrac{n+p)!}{p!} \times \dfrac{1}{(n-p+i)!(p-i)!}

\sf = {}^m C_i \times \dfrac{(n+p)!}{p!n!} \times \dfrac{n!}{(n-p+i)!(p-i)!}

\sf = {}^m C_i \cdot {}^{n+p} C_p \cdot {}^n C_{p-1} \{ {}^m C_i \cdot {}^n C_{p-i} = {}^{m+n} C_p \}

\sf f(m,n,p) = {}^{n+p} C_p \cdot {}^{m+n} C_p

\sf \dfrac{f(m,n,p)}{{}^{n+p} C_p} = {}^{m+n} C_p

Now

\displaystyle\sf g(m,n) = \sum\limits_{p=0}^{m+n} \dfrac{f(m,n,p)}{{}^{n+p} C_p}

\displaystyle\sf g(m,n) = \sum\limits_{p=0}^{m+n} {}^{m+n} C_p

\displaystyle\sf g(m,n) = 2^{m+n}

now check for options

\sf (A) \:g(m,n) = g(n,m)

\sf (B) \: g(m,n+1) = 2^{m+n+1}

\sf g(m+n,n) = 2^{m+1+n}

\sf (D) \: g(2m,2n) = 2^{2m+2n}

\sf = (2^{m+n}){}^2

\sf = (g(m,n))^2

\rm \therefore Options A,B,D are correct.


Anonymous: :D ✌
Anonymous: Fabulous❤
Anonymous: Di Im sorry from krrish's side
Anonymous: Usne aapki id sirf frustation mai delte ki thi
Anonymous: Thank u :)
Anonymous: It's ok
Similar questions