Math, asked by baman52, 11 months ago

For parabola (y-3)²=8(x-1)

1.Vertex
2.focus
3.Equation of directrix​

Answers

Answered by sahildhande987
89

\huge{\underline{\sf{\red{Answer}}}}

Given:

(y-3)²=8(x-1)

_____________________________________

Solution:

By the parabola we get

(y-3)²=8(x-1)

\implies 4a=8 \\ \implies \boxed{a=2}

1.Vertex

Vertex=(0,0)

\implies x-1=0 , y-3=0 \\ \\ \implies x=1,y=3 \\ \\ \leadsto{\boxed{V(1,3)}}

2.Focus

Focus=(a,0)

\implies x-1=a , y-3=0 \\ \\ \implies x-1=2 , y=3 \implies x=1 ,y=3 \\ \\ \leadsto \boxed{s(1,3)}

3.Equation of directrix

x=-a

\implies x-1=-2 \\ \\ \implies x=-1 \\ \\ \leadsto \boxed{x+1=0}

Answered by OxOAnuRadhaOxO
39

\huge{\tt{\green{Given}}}

(y-3)²=8(x-1)

★Solution★

By the parabola

(y-\beta)^2=4a(x-\alpha)

we get that

\implies 4a=8 \\ \implies a=\dfrac{8}{4} \\ \implies \huge{a=2}

1.Vertex

we know,

→Vertex=(0,0)

X=0 , Y= 0

Here X = x-1 and Y=y-3

\implies x-1=0 , y-3=0 \\ \\ \implies x=1,y=3 \\ \\ \leadsto{\boxed{V(1,3)}}

2.Focus

Focus=(a,0)

X=a ,Y=0

\implies x-1=a , y-3=0 \\ \\ \implies x-1=2 , y=3 \implies x=1 ,y=3 \\ \\ \\leadsto \boxed{s(1,3)}

3.Equation of directrix

x=-a

\implies x-1=-2 \\ \\ \implies x=-1 \\ \\ \leadsto{\boxed{x+1=0}}

Similar questions