Physics, asked by priya4537, 3 months ago

For "PHYSICS NEWTON"

✯ QUESTION:-

In a double slit experiment with sodium light of wavelength 5893 Å, produces interference pattern on a screen 100 cm away. If the distance between the slits is 0.49 mm, find the distance of
(i) the 10th Bright fringe from the centre;
(ii) 5th Dark fringe from the centre​

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
167

Answer:-

\pink{\bigstar} The distance of 10th bright fringe from the centre is \large\leadsto\boxed{\tt\purple{12 \: mm}}

\pink{\bigstar} The distance of 5th dark fringe from the centre is \large\leadsto\boxed{\tt\purple{5.4 \: mm}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given:-

  • Wavelength = 5893 Å

  • Interference pattern on screen 100 cm away.

  • Distance between the slits = 0.49 mm

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To Find:-

  • Distance of 10th bright fringe from the centre.

  • Distance of 5th dark fringe from the centre.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To Know:-

  • 1 Å = 1 × 10^-10 m

  • 1 mm = 10-³ m

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:-

We know,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

The distance of nth bright fringe from the central is

\pink{\bigstar} \large\underline{\boxed{\bf\green{x = \dfrac{n \lambda D}{d}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Substituting in the Formula:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf x = \dfrac{10 \times 5893 \times 10^{-10} \times 1}{0.49 \times 10^{-3}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf x = \dfrac{5893 \times 10^{-9}}{0.49 \times 10^{-3}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf x = \dfrac{5893 \times 10^{-6}}{0.49}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf x = 12026.5 \times 10^{-6}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf x = 12.0\times 10^{-3}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\bf\red{x = 12 \: mm}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, the distance of 10th bright fringe from the centre is 12 mm.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

The distance of nth dark fringe from the central is

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink{\bigstar} \large\underline{\boxed{\bf\green{x = (2n - 1) \dfrac{n \lambda D}{2d}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Substituting in the Formula:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf x = \dfrac{(2 \times 5 - 1) \times 5893 \times 10^{-10} \times 1}{2 \times 0.49 \times 10^{-3}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf x = \dfrac{9 \times 5893 \times 10^{-10}}{0.98 \times 10^{-3}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf x = \dfrac{53037 \times 10^{-7}}{0.98}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf x = 54119.38 \times 10^{-7}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf x = 5.4 \times 10^{-3}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\bf\red{x = 5.4 \: mm}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, the distance of 5th dark fringe from the centre is 5.4 mm.

Answered by PopularAnswerer01
228

To Find:-

  • Find the 10th Bright fringe from the centre.

  • Find the 5th fringe from the centre.

Given:-

  • Sodium light of wavelength 5893 Å .
  • Produces interference pattern on a screen 100 cm away.
  • Distance between the slits is 0.49 mm .

Solution:-

Here ,

  • 1Å = \tt \: 1 \times { 10 \: m }^{ - 10 }

  • 1 mm = \tt \: { 10 \: m }^{ - 3 }

Formula:-

 \large\underline{\boxed{x = \dfrac{n \lambda D}{d}}}

\tt\implies \: x = \dfrac { 10 \times 5893 \times { 10 }^{ -10 } \times 1 } { 0.49 \times { 10 } { -3 } }

\tt\implies \: x = \dfrac { 5893 \times { 10 }^{ -9 }  } { 0.49 \times { 10 } { -3 } }

\tt\implies \: x = 12 \times { 10}^{ -3 }

\tt\implies \: x = 12 mm

Hence ,

  • Distance is 12 mm .

Now ,

We have to find 5th fringe from the centre:-

Formula:-

 \large\underline{\boxed{x = (2n - 1) \dfrac{n \lambda D}{2d}}}

\tt\implies \: x = \dfrac { ( 2 \times 5 - 1 ) \times 5893 \times { 10 }^{ -10 } \times 1 } { 2 \times 0.49 \times { 10 } { -3 } }

\tt\implies \: x = \dfrac { 53037 \times { 10 }^{ -7 } } { 0.98 }

\tt\implies \: x = 54119.38 \times { 10 }^{ - 7 }

\tt\implies \: x = 5.4 \: m \: m

Hence ,

  • Distance is 5.4 mm
Similar questions