Math, asked by pasahanridhima, 2 months ago

For sets A, B and C by using properties of sets

(A union B) - C = (A – C) union (B - C)​

Answers

Answered by LivetoLearn143
0

\large\underline{\sf{Solution-}}

Let assume that,

\rm :\longmapsto\:x \:  \in \: (A\cup B) - C

\rm :\implies\:x \:  \in \: \bigg((A\cup B)\cap  {C}^{'} \bigg)

\rm :\implies\:x \:  \in \: \bigg((A\cap  {C}^{'})\cup (B\cap  {C}^{'}) \bigg)

\rm :\implies\:x \:  \in \: (A - C)\cup (B - C)

\rm :\implies\:(A\cup B) - C \:  \sub \: (A - C)\cup (B - C) -  - (1)

Let assume that,

\rm :\longmapsto\:x \:  \in \: (A - C)\cup (B - C)

\rm :\implies\:x \:  \in \: \bigg((A\cap  {C}^{'})\cup (B\cap  {C}^{'}) \bigg)

[ Using Distributive Law ]

\rm :\implies\:x \:  \in \: \bigg((A\cup B)\cap  {C}^{'} \bigg)

\rm :\implies\:x \:  \in \: (A\cup B) - C

\rm :\implies\:(A - C)\cup (B - C) \:  \sub \: (A\cup B) - C -  - (2)

From equation (1) and (2),

\rm :\implies\:(A\cup B) - C \:  =  \: (A - C)\cup (B - C)

Hence, Proved

Similar questions